Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 399: 130519, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38437964

RESUMEN

This study developed six machine learning models to predict the biochar properties from the dry torrefaction of lignocellulosic biomass by using biomass characteristics and torrefaction conditions as input variables. After optimization, gradient boosting machines were the optimal model, with the highest coefficient of determination ranging from 0.89 to 0.94. Torrefaction conditions exhibited a higher relative contribution to the yield and higher heating value (HHV) of biochar than biomass characteristics. Temperature was the dominant contributor to the elemental and proximate composition and the yield and HHV of biochar. Feature importance and SHapley Additive exPlanations revealed the effect of each influential factor on the target variables and the interactions between these factors in torrefaction. Software that can accurately predict the element, yield, and HHV of biochar was developed. These findings provide a comprehensive understanding of the key factors and their interactions influencing the torrefaction process and biochar properties.


Asunto(s)
Carbón Orgánico , Aprendizaje Automático , Biomasa , Temperatura
2.
Mol Breed ; 43(12): 86, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38028815

RESUMEN

Olive is an ancient oil-producing tree, widely cultivated in Mediterranean countries, and now spread to other areas of the world, including China. Recently, several molecular databases were constructed in different countries and platforms for olive identification using simple sequence repeats (SSRs) or single-nucleotide polymorphisms (SNPs). However, comparing their results across laboratories was difficult. Herein, hundreds of polymorphic single-copy nuclear sequence markers were developed from the olive genome. Using the advantage of multiplex PCR amplification and high-throughput sequencing, a fingerprint database was constructed for the majority of olives cultivated in China. We used 100 high-quality sequence loci and estimated the genetic diversity and structure among all these varieties. We found that compared with that based on SSRs, the constructed fingerprint database based on these 100 sequences or a few of them, could provide a reliable olive variety identification platform in China, with high discrimination among different varieties using the principle of BLAST algorithm. An example of such identification platform based on this study was displayed on the web for the olive database in China (http://olivedb.cn/jianding). After resolving redundant genotypes, we identified 126 olive varieties with distinct genotypes in China. These varieties could be divided into two clusters, and it was revealed that the grouping of the varieties has a certain relationship with their origin. Herein, it is concluded that these single-copy orthologous nuclear sequences could be used to construct a universal fingerprint database of olives across different laboratories and platforms inexpensively. Based on such a database, variety identification can be performed easily by any laboratory, which would further facilitate olive breeding and variety exchange globally. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01434-9.

3.
Energy (Oxf) ; 273: 127221, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36942281

RESUMEN

The ongoing global pandemic of COVID-19 has devastatingly influenced the environment, society, and economy around the world. Numerous medical resources are used to inhibit the infectious transmission of the virus, resulting in massive medical waste. This study proposes a sustainable and environment-friendly method to convert hazardous medical waste into valuable fuel products through pyrolysis. Medical protective clothing (MPC), a typical medical waste from COVID-19, was utilized for co-pyrolysis with oil palm wastes (OPWs). The utilization of MPC improved the bio-oil properties in OPWs pyrolysis. The addition of catalysts further ameliorated the bio-oil quality. HZSM-5 was more effective in producing hydrocarbons in bio-oil, and the relevant reaction pathway was proposed. Meanwhile, a project was simulated to co-produce bio-oil and electricity from the co-pyrolysis of OPWs and MPC from application perspectives. The techno-economic analysis indicated that the project was economically feasible, and the payback period was 6.30-8.75 years. Moreover, it was also environmentally benign as its global warming potential varied from -211.13 to -90.76 kg CO2-eq/t. Therefore, converting MPC and OPWs into biofuel and electricity through co-pyrolysis is a green, economic, and sustainable method that can decrease waste, produce valuable fuel products, and achieve remarkable economic and environmental benefits.

4.
Bioresour Technol ; 344(Pt B): 126096, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34626763

RESUMEN

Microalgae are the most prospective raw materials for the production of biofuels, pyrolysis is an effective method to convert biomass into bioenergy. However, biofuels derived from the pyrolysis of microalgae exhibit poor fuel properties due to high content of moisture and protein. Co-pyrolysis is a simple and efficient method to produce high-quality bio-oil from two or more materials. Tires, plastics, and bamboo waste are the optimal co-feedstocks based on the improvement of yield and quality of bio-oil. Moreover, adding catalysts, especially CaO and Cu/HZSM-5, can enhance the quality of bio-oil by increasing aromatics content and decreasing oxygenated and nitrogenous compounds. Consequently, this paper provides a critical review of the production of bio-oil from co-pyrolysis of microalgae with other biomass wastes. Meanwhile, the underlying mechanism of synergistic effects and the catalytic effect on co-pyrolysis are discussed. Finally, the economic viability and prospects of microalgae co-pyrolysis are summarized.


Asunto(s)
Microalgas , Biocombustibles , Biomasa , Catálisis , Calor , Aceites de Plantas , Polifenoles , Estudios Prospectivos , Pirólisis
5.
J Hazard Mater ; 424(Pt B): 127396, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34673394

RESUMEN

The application of waste oils as pyrolysis feedstocks to produce high-grade biofuels is receiving extensive attention, which will diversify energy supplies and address environmental challenges caused by waste oils treatment and fossil fuel combustion. Waste oils are the optimal raw materials to produce biofuels due to their high hydrogen and volatile matter content. However, traditional disposal methods such as gasification, transesterification, hydrotreating, solvent extraction, and membrane technology are difficult to achieve satisfactory effects owing to shortcomings like enormous energy demand, long process time, high operational cost, and hazardous material pollution. The usage of clean and safe pyrolysis technology can break through the current predicament. The bio-oil produced by the conventional pyrolysis of waste oils has a high yield and HHV with great potential to replace fossil fuel, but contains a high acid value of about 120 mg KOH/g. Nevertheless, the application of CaO and NaOH can significantly decrease the acid value of bio-oil to close to zero. Additionally, the addition of coexisting bifunctional catalyst, SBA-15@MgO@Zn in particular, can simultaneously reduce the acid value and positively influence the yield and quality of bio-oil. Moreover, co-pyrolysis with plastic waste can effectively save energy and time, and improve bio-oil yield and quality. Consequently, this paper presents a critical and comprehensive review of the production of biofuels using conventional and advanced pyrolysis of waste oils.


Asunto(s)
Biocombustibles , Pirólisis , Catálisis , Alimentos , Calor , Plásticos
6.
Sci Total Environ ; 809: 151170, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34699825

RESUMEN

The continuous growth of population and the steady improvement of people's living standards have accelerated the generation of massive food waste. Untreated food waste has great potential to harm the environment and human health due to bad odor release, bacterial leaching, and virus transmission. However, the application of traditional disposal techniques like composting, landfilling, animal feeding, and anaerobic digestion are difficult to ease the environmental burdens because of problems such as large land occupation, virus transmission, hazardous gas emissions, and poor efficiency. Pyrolysis is a practical and promising route to reduce the environmental burden by converting food waste into bioenergy. This paper aims to analyze the characteristics of food waste, introduce the production of biofuels from conventional and advanced pyrolysis of food waste, and provide a basis for scientific disposal and sustainable management of food waste. The review shows that co-pyrolysis and catalytic pyrolysis significantly impact the pyrolysis process and product characteristics. The addition of tire waste promotes the synthesis of hydrocarbons and inhibits the formation of oxygenated compounds efficiently. The application of calcium oxide (CaO) exhibits good performance in the increment of bio-oil yield and hydrocarbon content. Based on this literature review, pyrolysis can be considered as the optimal technique for dealing with food waste and producing valuable products.


Asunto(s)
Pirólisis , Eliminación de Residuos , Biocombustibles , Catálisis , Alimentos , Humanos
7.
Environ Pollut ; 279: 116934, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33744627

RESUMEN

The COVID-19 pandemic has exerted great shocks and challenges to the environment, society and economy. Simultaneously, an intractable issue appeared: a considerable number of hazardous medical wastes have been generated from the hospitals, clinics, and other health care facilities, constituting a serious threat to public health and environmental sustainability without proper management. Traditional disposal methods like incineration, landfill and autoclaving are unable to reduce environmental burden due to the issues such as toxic gas release, large land occupation, and unsustainability. While the application of clean and safe pyrolysis technology on the medical wastes treatment to produce high-grade bioproducts has the potential to alleviate the situation. Besides, medical wastes are excellent and ideal raw materials, which possess high hydrogen, carbon content and heating value. Consequently, pyrolysis of medical wastes can deal with wastes and generate valuable products like bio-oil and biochar. Consequently, this paper presents a critical and comprehensive review of the pyrolysis of medical wastes. It demonstrates the feasibility of pyrolysis, which mainly includes pyrolysis characteristics, product properties, related problems, the prospects and future challenges of pyrolysis of medical wastes.


Asunto(s)
COVID-19 , Residuos Sanitarios , Humanos , Pandemias , Pirólisis , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...