Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
2.
Mol Neurobiol ; 61(4): 2197-2214, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37864767

RESUMEN

Traumatic spinal cord injury (TSCI) is a prevalent central nervous system condition that imposes a significant burden on both families and society, affecting more than 2 million people worldwide. Recently, there has been increasing interest in bone marrow mesenchymal stem cell (BMSC) transplantation as a promising treatment for spinal cord injury (SCI) due to their accessibility and low immunogenicity. However, the mere transplantation of BMSCs has limited capacity to directly participate in the repair of host spinal cord nerve function. MiR-28-5p, identified as a key differentially expressed miRNA in spinal cord ischemia-reperfusion injury, exhibits differential expression and regulation in various neurological diseases. Nevertheless, its involvement in this process and its specific regulatory mechanisms in SCI remain unclear. Therefore, this study aimed to investigate the potential mechanisms through which miR-28-5p promotes the neuronal differentiation of BMSCs both in vivo and in vitro. Our results indicate that miR-28-5p may directly target Notch1, thereby facilitating the neuronal differentiation of BMSCs in vitro. Furthermore, the transplantation of lentivirus-mediated miR-28-5p-overexpressed BMSCs into SCI rats effectively improved footprint tests and Basso, Beattie, and Bresnahan (BBB) scores, ameliorated histological morphology (hematoxylin-eosin [HE] and Nissl staining), promoted axonal regeneration (MAP2 and growth-associated protein 43 [GAP43]), and facilitated axonal remyelination (myelin basic protein [MBP]). These findings may suggest that miR-28-5p-modified BMSCs could serve as a therapeutic target to enhance the behavioral and neurological recovery of SCI rats.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , MicroARNs , Traumatismos de la Médula Espinal , Humanos , Ratas , Animales , Trasplante de Células Madre Mesenquimatosas/métodos , Traumatismos de la Médula Espinal/patología , Médula Espinal/patología , MicroARNs/genética , Células Madre Mesenquimatosas/metabolismo , Recuperación de la Función
3.
Mol Neurobiol ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015303

RESUMEN

Spinal cord injury (SCI) is a prevalent and significant injury to the central nervous system, resulting in severe consequences. This injury is characterized by motor, sensory, and excretory dysfunctions below the affected spinal segment. Transplantation of bone marrow mesenchymal stem cells (BMSCs) has emerged as a potential treatment for SCI. However, the low survival as well as the differentiation rates of BMSCs within the spinal cord microenvironment significantly limit their therapeutic efficiency. Tauroursodeoxycholic acid (TUDCA), an active ingredient found in bear bile, has demonstrated its neuroprotective, antioxidant, and antiapoptotic effects on SCI. Thus, the present study was aimed to study the possible benefits of combining TUDCA with BMSC transplantation using an animal model of SCI. The results showed that TUDCA significantly enhanced BMSC viability and reduced apoptosis (assessed by Annexin V-FITC, TUNEL, Bax, Bcl-2, and Caspase-3) as well as oxidative stress (assessed by ROS, GSH, SOD, and MDA) both in vitro and in vivo. Additionally, TUDCA accelerated tissue regeneration (assessed by HE, Nissl, MAP2, MBP, TUJ1, and GFAP) and improved functional recovery (assessed by BBB score) following BMSC transplantation in SCI. These effects were mediated via the Nrf-2 signaling pathway, as evidenced by the upregulation of Nrf-2, NQO-1, and HO-1 expression levels. Overall, these results indicate that TUDCA could serve as a valuable adjunct to BMSC transplantation therapy for SCI, potentially enhancing its therapeutic efficacy.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37971467

RESUMEN

Objective: To investigate the protective effect of Illicium verum extract on the vascularization of osteoporotic fracture in rats, and to elucidate its potential mechanism. Methods: The osteoporotic fracture model was established in ovariectomized rats. Rats were infused with 0.05 ml/kg extract in the stomach every morning. Eighteen rats are then divided into control group, model group, and Illicium verum extract group with 6 rats in each group. To observe the therapeutic effect of Illicium verum extract on osteoporotic rats. Femoral bone mineral density and elastic segment end-point load were evaluated by dual-energy x-ray absorptiometry and three-point bending test. Hematoxylin-eosin staining was used to measure the number and area of callus blood vessels. The serum levels of VEGF and NO were detected by ELISA. Moreover, the expressions of NOX2, NOX4, NRF2, p-PI3K, CyclinD1, VEGF, HIF1α, and eNOS in HUVEC were detected by Western blot. CCK8 and wound healing assay were used to detect the proliferation and migration of HUVEC. Then, the ability of HUVEC to form blood vessels was detected by tube formation assay. Results: Firstly, control group showed the normal pathomorphology and density of femoral bone, and model group showed significantly decreased bone density and consistent with bone microstructure degeneration, destruction, thinning, and fracture of bone trabecular structure vs control group, and illicium verum extract significantly increased femoral density and maximum load, increased the number and area of callus blood vessels and increased VEGF and NO levels in serum vs model group. Then, Illicium verum extract promoted the expression of NRF2, p-PI3K, CyclinD1, VEGF, HIF1α, and eNOS protein in HUVEC, inhibited the expression of NOX2 and NOX4, and enhanced the cell proliferation, migration, and angiogenesis. However, the effect was reversed by the overexpression of NRF2 and the treatment with LY294002. Conclusion: Illicium verum extract protects the vascularization of the osteoporotic fracture model in rats.

5.
Heliyon ; 9(9): e20041, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809435

RESUMEN

A common spinal condition known as lumbar disc herniation (LDH) can result in radicular and low back discomfort. A 27-year-old man was admitted to our hospital with a 6-year history of persistent low back pain, and his low back pain had recurred with radiation to his lower extremities over the last two months. An extensive right-sided paracentral disc herniation in the L5/S1 intervertebral region, which compressed the nerve root, was discovered by magnetic resonance imaging (MRI) of his lumbar spine. After receiving conservative treatment, the patient reported that his lower back discomfort and neurogenic claudication had gradually subsided after 4 months. After one year, a follow-up MRI showed that the massive, prolapsed disc herniation at the L5/S1 level had totally disappeared. The sagittal protrusion length of the L5/S1 intervertebral disc shrank from 12.35 mm to 3.49 mm. However, there remained a chance of vertebral height loss. During the course of treatment, the height of the L5/S1 intervertebral space was still slightly reduced. The intervertebral space height declined from 7.705 mm to 7.201 mm after one year of treatment. The current case and a review of the literature demonstrate that LDH can decrease with conservative therapy over a short period of time. We stress the effectiveness of conservative treatment in very select LDH cases that lack a clear surgical justification.

7.
BMC Musculoskelet Disord ; 24(1): 54, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681804

RESUMEN

BACKGROUND: A consensus regarding the optimal approach for treating femoral neck fractures is lacking. We aimed to investigate the biomechanical outcomes of Femoral Neck System (FNS) internal fixation components in the treatment of nonanatomically reduced femoral neck fractures. METHOD: We constructed two types of femoral neck fractures of the Pauwels classification with angles of 30° and 50°, and three models of anatomic reduction, positive buttress reduction and negative buttress reduction were constructed. Subgroups of 1 to 4 mm were divided according to the distance of displacement in the positive buttress reduction and negative buttress reduction models. The von Mises stress and displacements of the femur and FNS internal fixation components were measured for each fracture group under 2100-N axial loads. RESULTS: When the Pauwels angle was 30°, the positive 1-mm and 2-mm models had lower FNS stress than the negative buttress model. The positive 3- and 4-mm models showed FNS stress similar to that of the negative buttress model. But the four positive buttress models had similar stresses on the femur as the negative buttress model. When the Pauwels angle was 50°, the four positive buttress models had higher FNS stress than the negative buttress model. Three positive buttress models (2 mm, 3 and 4 mm) resulted in lower stress of the femur than the negative buttress model, though the 1-mm model did not. When the Pauwels angle was 30°, the positive buttress model had a lower displacement of the FNS than the negative buttress model and a similar displacement of the femur with the negative buttress model. When the Pauwels angle was 50°, the positive buttress model had a higher displacement of the FNS and femur than the negative buttress model. Our study also showed that the von Mises stress and displacement of the internal fixation and the femur increased as the fracture angle increased. CONCLUSION: From the perspective of biomechanics, when the Pauwels angle was 30°, positive buttress was more stable to negative buttress. However, when the Pauwels angle was 50°, this advantage weakens. In our opinion, the clinical efficacy of FNS internal fixation with positive buttress may be related to the fracture angle, neck-shaft angle and alignment in the lateral view. This result needs verification in further clinical studies.


Asunto(s)
Fracturas del Cuello Femoral , Cuello Femoral , Humanos , Cuello Femoral/diagnóstico por imagen , Cuello Femoral/cirugía , Análisis de Elementos Finitos , Fracturas del Cuello Femoral/diagnóstico por imagen , Fracturas del Cuello Femoral/cirugía , Resultado del Tratamiento , Fijación Interna de Fracturas/métodos , Fenómenos Biomecánicos
8.
Environ Sci Pollut Res Int ; 30(8): 21535-21547, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36272006

RESUMEN

Natural nanoparticles (NNP) are ubiquitous in natural water and can interact with other contaminants, causing ecotoxic effects on aquatic nontarget organisms. However, the impact of NNPs on the ecotoxicity of antibiotics remains largely unknown. This work investigated the acute toxicity, chronic effect, and oxidative response and damage in Daphnia magna co-exposed to phenicol antibiotics (chloramphenicol, thiamphenicol) and different concentrations of NNPs (10 mg/L: environmentally relevant concentration; 100 mg/L: a high concentration that caused no apparent immobilization in D. magna). The results showed that the acute toxicity of chloramphenicol was increased by 10 mg/L NNPs but decreased by 100 mg/L NNPs; both concentrations of NNPs increased and decreased acute toxicities of thiamphenicol and chloramphenicol + thiamphenicol treatments, respectively. After long-term exposure, phenicol antibiotics (1 µg/L) and NNP (10 mg/L) mixtures in environmentally relevant concentrations significantly affected the reproduction of D. magna but did not influence their growth. The catalase activity, reduced glutathione level, and malonaldehyde content in D. magna also varied with the NNPs concentrations. Notably, the lowest concentration of thiamphenicol and chloramphenicol + thiamphenicol combined with NNPs significantly increased the malondialdehyde content in D. magna compared with the control, indicating membrane lipid peroxidation occurred in daphnids. This study suggests that the toxic effects of contaminants and NNPs on aquatic organisms should be considered thoroughly to avoid underestimating the hazard of these pollutants in the actual aquatic environment.


Asunto(s)
Nanopartículas , Tianfenicol , Contaminantes Químicos del Agua , Animales , Antibacterianos/toxicidad , Tianfenicol/toxicidad , Daphnia , Estrés Oxidativo , Cloranfenicol/toxicidad , Nanopartículas/toxicidad , Contaminantes Químicos del Agua/análisis , Reproducción
9.
J Clin Med ; 11(23)2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36498499

RESUMEN

Ankle sprains can lead to chronic lateral ankle instability caused by an injured anterior talofibular ligament (ATFL), and surgery is often required when conservative treatments fail. BROSTROM surgery is considered the gold standard and has a definite curative effect. Advancements in arthroscopic surgery and improvements in implanted anchors have led to an increase in ATFL repairs using arthroscopic surgery. Arthroscopic AFTL repair is less invasive, and patients could experience faster recovery compared to open AFTL repair. To simplify the complicated suture-passing processes in arthroscopic AFTL repair, we developed a crochet hook and loop wire technique, which is described in this paper.

10.
Stem Cell Res Ther ; 13(1): 453, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064455

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are a new type of stable noncoding RNA and have been proven to play a crucial role in osteoporosis. This study explored the role and mechanism of hsa_circ_0001485 in osteogenic differentiation. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Ontology (GO) enrichment analysis were performed according to the previous sequencing data in human bone marrow mesenchymal stem cells (BMSC) before and after the induction of osteogenic differentiation on the differentially expressed circRNAs, to screen out signaling pathways associated with osteogenic differentiation. The hFOB 1.19 cells were used to verify the function and mechanism of specific circRNAs in osteogenic differentiation. Additionally, small interfering fragments and overexpression plasmids were used to determine the role of specific circRNAs during osteogenic differentiation. Furthermore, pull-down experiments and mass spectrometry were performed to determine the proteins that bind to specific circRNAs. RESULTS: The KEGG and GO enrichment analyses showed that the TGFß-BMP signaling pathway was related to the osteogenic differentiation process, and four circRNAs were associated with the pathway. The quantitative polymerase chain reaction analysis revealed that hsa_circ_0001485 expression was increased during the osteogenic differentiation process of BMSCs. Knockdown of hsa_circ_0001485 suppressed the activity of the alkaline phosphatase enzyme and the expression of RUNX2, osteopontin, and osteocalcin in the osteogenic hFOB 1.19 cells, whereas overexpression of hsa_circ_0001485 promoted their expression. Additionally, we found that hsa_circ_0001485 and BMPR2 targeted binding to activate the TGFß-BMP signaling pathway and promoted osteogenic differentiation through mass spectrometry analysis. CONCLUSION: This study demonstrates that hsa_circ_0001485 is highly expressed in the osteogenic hFOB 1.19 cells, which activate the TGFß-BMP pathway through targeted binding of BMPR2, and plays a positive role in regulating osteogenic differentiation.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , ARN Circular , Factor de Crecimiento Transformador beta , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Humanos , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Osteogénesis/genética , Osteogénesis/fisiología , ARN Circular/genética , ARN Circular/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
11.
Injury ; 53(8): 2754-2762, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35760641

RESUMEN

BACKGROUND: Consensus regarding the optimal amount of bone cement and vertebral height in the treatment of osteoporotic vertebral compression fractures (OVCFs) is lacking. Our purpose was to explore the optimal amount of bone cement and vertebral height in OVCF after percutaneous vertebral augmentation (PVA). METHODS: A three-dimensional finite element model of the L1-L3 segments was constructed from CT scans of aging osteoporosis patients. Four different postoperative vertebral height models were simulated according to Genant semiquantitative grades 0, 1, 2, and 3. The volume of bone cement filling ranged from 3 ml to 6 ml. These models evaluated the von Mises stress of injured vertebral bodies, adjacent vertebral bodies and intervertebral discs under flexion, extension, left flexion, and right flexion after PVA. RESULTS: When the bone cement content was held constant, as the height of the vertebral body decreased, the stress of the L2 vertebral body decreased during left flexion and right flexion, but the stress of the L2 vertebral body increased and decreased during flexion and extension. As the height of the vertebral body decreased, the stress of the L1-L2 intervertebral disc increased. There was no significant change in the stress of other adjacent vertebrae or intervertebral discs. When the Genant grade was 0, 1, or 2 (3 ml and 4 ml), the stress of the overall vertebral body was closest to normal. CONCLUSIONS: When the height of the vertebral body is restored to the same height, a bone cement filling volume of 3 ml to 6 ml is suitable and will not produce a significant change in the stress of the vertebral body or adjacent vertebral body. As vertebral body height was lost, it may promote the degeneration of the intervertebral disc above the injury vertebrae after PVA. It is appropriate for the height of the vertebral body to return to Genant grade 0 or Genant grade 1 after surgery. When the height of the vertebral body has Genant grade 2 status, it was best to use 3 ml to 4 ml of bone cement filling. Therefore, when treating OVCFs, clinicians do not need to pursue complete reduction of the vertebral body. It is also important to verify the biomechanics results in clinical studies.


Asunto(s)
Fracturas por Compresión , Fracturas Osteoporóticas , Fracturas de la Columna Vertebral , Cementos para Huesos/uso terapéutico , Análisis de Elementos Finitos , Fracturas por Compresión/diagnóstico por imagen , Fracturas por Compresión/cirugía , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/lesiones , Vértebras Lumbares/cirugía , Fracturas Osteoporóticas/diagnóstico por imagen , Fracturas Osteoporóticas/tratamiento farmacológico , Fracturas Osteoporóticas/cirugía , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de la Columna Vertebral/cirugía
12.
Aging (Albany NY) ; 14(8): 3400-3415, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439733

RESUMEN

Circular RNA (circRNA) is related to many human diseases including osteoarthritis (OA). Our research purpose was to show that functional circRNAs have a role in the pathogenesis of OA, while also identifying potential circRNA that bind to miRNA-27b-3p. Microarray analysis was used to evaluate the expression of CircRNA in OA and normal cartilage. The role and functional mechanism of Circ_0000423 up-regulation were detected in OA and verified in vitro and in vivo. RNA transfection, qRT-PCR, Western blot analysis, immunofluorescence, and dual-luciferase assays were used to investigate the interaction between Circ_0000423 and miRNA-27b-3p in vitro. The roles of Circ_0000423 were discussed in vivo. Our results discovered 11 down-regulated circRNAs and 101 up-regulated circRNAs between control and OA tissues, and confirmed that Circ_0000423 an increase significantly in OA tissues by evaluating the different circRNAs expressions. Meanwhile, luciferase analysis confirmed Circ_0000423 can be directly targeted by miRNA-27b-3p and act as a miRNA-27b-3p sponge. Circ_0000423 can influence MMP-13 and collagen II expression by targeting miRNA-27b-3p expression as ceRNA in OA. Furthermore, AAV-shRNA-Circ 0000423 intra-articular injection slows the progression of OA by decreasing articular cartilage destruction and erosion, joint surface fibrosis, osteophyte formation, MMP-13 expression, and increasing collagen II expression in the articular cartilage of ACLT-induced OA mice model. These findings confirmed that the Circ_0000423-miRNA-27b-3p-MMP-13 axis could affect the pathogenesis of OA which might lead to a novel target for diagnostic molecular biological indicators and potential OA treatments.


Asunto(s)
Cartílago Articular , MicroARNs , Osteoartritis , Animales , Cartílago Articular/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/metabolismo , ARN Circular/genética
13.
Environ Monit Assess ; 194(1): 44, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34957530

RESUMEN

The seasonal and spatial variation in the phytoplankton community structure and the environmental variables were investigated in December (the dry season) 2016 and July (the rainy season) 2017 in the Jinjiang River Estuary, China. We identified a total of 138 species of phytoplankton, which were mainly Chlorophyta, Bacillariophyta, and Cryptophyta in the dry season; however, in the rainy season, only Bacillariophyta were found. In the Jinjiang River Estuary, the species evenness and the biodiversity index were higher in the rainy season and that the species diversity was higher in the dry season. Redundancy analysis (RDA) revealed that the dominant species were statistically related to many of the environmental variables, including the water temperature (WT), pH, salinity (Sal), dissolved oxygen (DO), total phosphorus (TP), and total nitrogen (TN). Among the variables, the Sal, DO, TP, and TN had a significant influence on the dominant species distribution, and the WT and pH also affected the dominant species distribution to some extent.


Asunto(s)
Fitoplancton , Ríos , Monitoreo del Ambiente , Estuarios , Estaciones del Año
14.
Bioengineered ; 12(1): 4911-4923, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34374320

RESUMEN

Circular RNA (CircRNA) plays a potential role in bone formation. We aimed to study the circRNAs expression profiles and their functions in osteogenic differentiation of human bone marrow stromal cells (BMSCs). Firstly, we established osteogenic differentiation of BMSCs displaying increased mRNA expression of osteogenic differentiation marker (RUNX2, OPN, and OCN), increased ALP activity and protein expression, and increased mineralized nodules formation, as well as morphological alteration. Then, we employed high-throughput sequencing to analyze circRNA expression and found that 3440 and 3893 circRNAs in non-induced and induced groups, respectively. We further validated the 10 differentially expressed circRNAs with the most significant difference between induced and non-induced groups. Among these ten circRNAs, five of them with more than one miRNA binding site were used to construct a ceRNA network exhibiting 81 miRNAs and 182 target mRNAs. Furthermore, among these five circRNAs, we found only circ_0005564 significantly reduced the mRNA expression of RUNX2, OPN, and OCN. The circularity of circ_0005564 was verified. Our results showed that knockdown of circ_0005564 inhibited osteoblast differentiation in BMSCs. Taken together, our study demonstrates that circ_0005564 is a potential positive regulator of osteogenic differentiation of BMSCs.


Asunto(s)
Diferenciación Celular/genética , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Osteoporosis/metabolismo , ARN Circular , Células Cultivadas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Análisis de Secuencia de ARN
15.
Exp Ther Med ; 22(3): 940, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34306204

RESUMEN

Psoralen, one of the active ingredients in Psoralea corylifolia, has been previously reported to regulate the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). A previous study revealed that psoralen can regulate the expression levels of microRNA-488 and runt-related transcription factor 2 (Runx2) to promote the osteogenic differentiation of BMSCs. However, the underlying signalling pathway in this process remains to be fully elucidated. BMSCs have also been confirmed to play a key role in the occurrence and development of osteoporosis, and are expected to be potential seed cells in the treatment of osteoporosis. In order to explore the potential signalling pathways of psoralen acting on BMSCs, in the present study, human BMSCs (hBMSCs) were treated with different concentrations of psoralen (0.1, 1, 10 and 100 µmol/l) and the TGF-ß receptor I (RI) inhibitor SB431542 (5 µmol/l) in vitro for 3, 7 or 14 days. Cell Counting Kit-8 and MTT assays were used to measure cell proliferation and cell viability of hBMSCs following psoralen administration. Alkaline phosphatase (ALP) activity and alizarin red S staining were used to assess the osteogenic differentiation ability of hBMSCs. Reverse transcription-quantitative PCR and western blotting were used to measure the expression of osteogenic differentiation-related genes [bone morphogenetic protein 4 (BMP4), osteopontin (OPN), Runx2 and Osterix] and proteins associated with the TGF-ß/Smad3 pathway [TGF-ß1, TGF-ß RI, phosphorylated (p-)Smad and Smad3]. Psoralen was found to increase the proliferation and viability of hBMSCs. Although different concentrations of psoralen enhanced ALP activity and the calcified nodule content in hBMSCs, the enhancement effects were more potent at lower concentrations (0.1, 1 and 10 µmol/l). The expression of BMP4, OPN, Osterix, Runx2, TGF-ß1, TGF-ß RI and p-Smad3 was also promoted by psoralen at lower concentrations (0.1, 1 and 10 µmol/l). In addition, whilst SB431542 could inhibit calcium deposition and osteogenic differentiation-related gene expression in hBMSCs, psoralen effectively reversed the inhibitory effects of SB431542. In conclusion, psoralen accelerates the osteogenic differentiation of hBMSCs by activating the TGF-ß/Smad3 pathway, which may be valuable for the future clinical treatment of osteoporosis.

16.
Injury ; 52(8): 2116-2125, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34154816

RESUMEN

BACKGROUND: Consensus regarding the optimal approach for the treatment of femoral neck fractures remains lacking. A new internal fixation femoral neck system (FNS) was developed and used in clinical practice. We aimed to investigate the biomechanical outcomes of different types of FNS in the treatment of unstable femoral neck fractures. METHOD: In this study, we constructed three different types of unstable femoral neck fractures of Pauwels classification with angles of 50°, 60°, and 70°. We set up four test groups, namely, the one-hole plated FNS group, two-hole plated FNS group, inverted cannulated screw group and triangle cannulated screw group. Under 2100 N axial loads, displacements and the von Mises stress of the femur and internal fixation components were measured for each fracture group. RESULTS: When the Pauwels angle was 50°or 60°, the one-hole locking plated FNS was as superior as the two-hole plated FNS in terms of femur and internal fixation displacement, and the inverted cannulated screw had slightly better stability than the triangular cannulated screw. However, when the angle increases to 70°, the two-hole locking plate has the minimum displacement, followed by the triangular cannulated screw and inverted cannulated screw, which is the worst displacement for the single-hole locking plate. Regardless of the angle, the two sets of FNS have higher internal fixation stress than the two sets of cannulated screws, which is approximately 1.6-3.0 times that of the cannulated screw group. CONCLUSION: From the perspective of biomechanics, we suggest that when the angle of the fracture line is less than 60°, both single-hole locking plated or double-hole locking plated FNS can be used to treat unstable femoral neck fractures. However, when the angle of the fracture line is greater than 70°, we recommend using a double-hole locking plated FNS. This result needs further verification in further clinical studies.


Asunto(s)
Fracturas del Cuello Femoral , Fenómenos Biomecánicos , Tornillos Óseos , Fracturas del Cuello Femoral/diagnóstico por imagen , Fracturas del Cuello Femoral/cirugía , Cuello Femoral , Análisis de Elementos Finitos , Fijación Interna de Fracturas , Humanos
17.
Environ Toxicol Chem ; 40(9): 2463-2473, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33939861

RESUMEN

Suspended particles (SP) exist widely in various water systems and are able to adsorb other pollutants in water, producing ecotoxic effects on aquatic nontarget species. Until now, however, few studies have focused on the effects of SP on antibiotics. Therefore, the present study investigated the effects of the mixtures of SP and phenicol antibiotics (chloramphenicol [CAP], thiamphenicol [TAP]) on acute toxicity and oxidative stress responses in Daphnia magna. The results indicated that the acute toxicity of phenicol antibiotics in D. magna was increased when combined with SP. Besides, the immobilization of daphnids caused by phenicol drugs in the presence of 10 mg/L of SP was more intense than that with 200 mg/L of SP. Furthermore, the impact of SP with diverse concentrations on the activity of catalase and the level of reduced glutathione in D. magna was different. Notably, almost all CAP + TAP + SP treatments markedly increased malondialdehyde content in D. magna, causing potential cellular oxidative damage in D. magna. In summary, the present study provides insights into the toxic effects of phenicol antibiotic and SP mixtures on aquatic organisms. Environ Toxicol Chem 2021;40:2463-2473. © 2021 SETAC.


Asunto(s)
Antibacterianos , Cloranfenicol , Tianfenicol , Contaminantes Químicos del Agua , Animales , Antibacterianos/efectos adversos , Cloranfenicol/efectos adversos , Daphnia , Estrés Oxidativo , Tianfenicol/efectos adversos , Agua , Contaminantes Químicos del Agua/análisis
19.
Ecotoxicology ; 30(1): 31-42, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33247806

RESUMEN

Acute toxicities of chloramphenicol (CAP), thiamphenicol (TAP), and florfenicol (FLO) and their mixtures on Daphnia magna under two representative temperatures of the aquatic environment (20 and 25 °C) have been examined. Their toxicities depicted with an order of 72-h EC50 values were as follows: CAP > FLO > TAP and CAP ≈ FLO > TAP under 20 and 25 °C, separately. Furthermore, the acute toxicity significantly increased with the rise of temperature from 20 to 25 °C in nearly all separate and mixture phenicol antibiotics. Meanwhile, the most toxic combination under two different temperatures was diverse. The nature of toxicological interactions of phenicol antibiotic mixtures was analyzed by Combination Index (CI) equation. In general, a dual synergism-antagonism effect was dominant in nearly all mixtures at both temperatures. The prediction suitability of Concentration Addition (CA), Independent Action (IA) models, and CI method was compared, suggesting that the CI equation seems to be more appropriate for predicting the toxicity values of phenicol drugs than CA and IA models. In brief, phenicol antibiotic mixtures with temperature variation may pose more significant hazards and risks to aquatic organisms; hence, the environment.


Asunto(s)
Cloranfenicol/toxicidad , Daphnia/fisiología , Tianfenicol/análogos & derivados , Contaminantes Químicos del Agua , Animales , Temperatura , Tianfenicol/toxicidad , Contaminantes Químicos del Agua/toxicidad
20.
Mar Pollut Bull ; 159: 111482, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32892917

RESUMEN

Microplastics have received widespread attention as an emerging contaminant, but limited information was available during wetland restoration. The occurrence and characteristics of microplastics and their interaction with heavy metals in surface sediments from the Jinjiang Estuarine restored mangrove wetland were investigated. The abundance of microplastics ranged from 490 ± 127.3 to 1170 ± 99.0 items/500 g dry sediment, and the restored regions were much higher than mudflats, indicating mangrove restoration promoted its accumulation. Polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) were the main materials of microplastics after Raman spectroscopy identification. SEM-EDS images illustrated the mechanical erosion and chemical weathering on microplastics' surface, and Cr, Zn, Pb, and Cd were observed in elemental composition. The contents of Cr, Ni, Cu, Zn, Pb, As, and Cd accumulated in microplastics were not correlated with their total concentrations in sediments except for Hg, indicating that they might not be derived from sediments.


Asunto(s)
Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos , Microplásticos , Plásticos , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...