Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Aging Dis ; 15(3): 965-976, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38722791

RESUMEN

Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedades Neurodegenerativas , Enfermedades Neuroinflamatorias , Humanos , Enfermedades Neuroinflamatorias/terapia , Enfermedades Neuroinflamatorias/inmunología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/inmunología , Animales , Microglía/metabolismo , Microglía/inmunología , Inflamación/terapia , Astrocitos/metabolismo
2.
Aging Dis ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38739934

RESUMEN

Amyotrophic lateral sclerosis (ALS) stands as a rare, yet severely debilitating disorder marked by the deterioration of motor neurons (MNs) within the brain and spinal cord, which is accompanied by degenerated corticobulbar/corticospinal tracts and denervation in skeletal muscles. Despite ongoing research efforts, ALS remains incurable, attributed to its intricate pathogenic mechanisms. A notable feature in the pathology of ALS is the prevalence of TAR DNA-binding protein 43 (TDP-43) proteinopathy, detected in approximately 97% of ALS cases, underscoring its significance in the disease's progression. As a result, strategies targeting the aberrant TDP-43 protein have garnered attention as a potential avenue for ALS therapy. This review delves into the existing drug screening systems aimed at TDP-43 proteinopathy and the models employed for drug efficacy validation. It also explores the hurdles encountered in the quest to develop potent medications against TDP-43 proteinopathy, offering insights into the intricacies of drug discovery and development for ALS. Through this comprehensive analysis, the review sheds light on the critical aspects of identifying and advancing therapeutic solutions for ALS.

3.
Aging Dis ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38739936

RESUMEN

Aging-related hypogonadism involves complex mechanisms in humans, predominantly relating to the decline of multiple hormones and senile gonads. Late-onset hypogonadism (LOH) and erectile dysfunction (ED) are the main manifestations in men, while premature ovarian insufficiency (POI) and menopause are the main forms in women. Anti-aging measures include lifestyle modification and resistance training, hormonal supplementation, stem cell therapy, metformin, and rapamycin. In this expert consensus, the mechanisms, efficacy, and side effects of stem cell therapy on aging gonadal function are reviewed. Furthermore, various methods of stem cell therapy, administered intravenously, intracavernously, and intra-ovarially, are exemplified in detail. More clinical trials on aging-related gonadal dysfunction are required to solidify the foundation of this topic.

4.
Aging Dis ; 15(1): 74-95, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37307822

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease which is strongly associated with age. The incidence of ALS increases from the age of 40 and peaks between the ages of 65 and 70. Most patients die of respiratory muscle paralysis or lung infections within three to five years of the appearance of symptoms, dealing a huge blow to patients and their families. With aging populations, improved diagnostic methods and changes in reporting criteria, the incidence of ALS is likely to show an upward trend in the coming decades. Despite extensive researches have been done, the cause and pathogenesis of ALS remains unclear. In recent decades, large quantities of studies focusing on gut microbiota have shown that gut microbiota and its metabolites seem to change the evolvement of ALS through the brain-gut-microbiota axis, and in turn, the progression of ALS will exacerbate the imbalance of gut microbiota, thereby forming a vicious cycle. This suggests that further exploration and identification of the function of gut microbiota in ALS may be crucial to break the bottleneck in the diagnosis and treatment of this disease. Hence, the current review summarizes and discusses the latest research advancement and future directions of ALS and brain-gut-microbiota axis, so as to help relevant researchers gain correlative information instantly.


Asunto(s)
Esclerosis Amiotrófica Lateral , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Humanos , Anciano , Preescolar , Esclerosis Amiotrófica Lateral/epidemiología , Enfermedades Neurodegenerativas/complicaciones , Microbioma Gastrointestinal/fisiología , Eje Cerebro-Intestino , Encéfalo
5.
Aging Dis ; 15(2): 640-697, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37450923

RESUMEN

Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.


Asunto(s)
Productos Biológicos , Neoplasias , Animales , Humanos , Genes myc , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/genética , Productos Biológicos/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Transducción de Señal , Neoplasias/tratamiento farmacológico
6.
Brain Behav Immun ; 115: 335-355, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914102

RESUMEN

Alzheimer's disease (AD) and other forms of dementia represent major public health challenges but effective therapeutic options are limited. Pathological brain aging is associated with microvascular changes and impaired clearance systems. The application of omega-3 polyunsaturated fatty acids (n-3 or omega-3 PUFAs) is one of the most promising nutritional interventions in neurodegenerative disorders from epidemiological data, clinical and pre-clinical studies. As essential components of neuronal membranes, n-3 PUFAs have shown neuroprotection and anti-inflammatory effects, as well as modulatory effects through microvascular pathophysiology, amyloid-beta (Aß) clearance and glymphatic pathways. This review meticulously explores these underlying mechanisms that contribute to the beneficial effects of n-3 PUFAs against AD and dementia, synthesizing evidence from both animal and interventional studies.


Asunto(s)
Enfermedad de Alzheimer , Ácidos Grasos Omega-3 , Animales , Barrera Hematoencefálica/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Encéfalo/metabolismo , Enfermedad de Alzheimer/metabolismo
7.
EMBO Mol Med ; 15(12): e17815, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37994307

RESUMEN

Efficient clearance of dying cells (efferocytosis) is an evolutionarily conserved process for tissue homeostasis. Genetic enhancement of efferocytosis exhibits therapeutic potential for inflammation resolution and tissue repair. However, pharmacological approaches to enhance efferocytosis remain sparse due to a lack of targets for modulation. Here, we report the identification of columbamine (COL) which enhances macrophage-mediated efferocytosis and attenuates intestinal inflammation in a murine colitis model. COL enhances efferocytosis by promoting LC3-associated phagocytosis (LAP), a non-canonical form of autophagy. Transcriptome analysis and pharmacological characterization revealed that COL is a biased agonist that occupies a part of the ligand binding pocket of formyl peptide receptor 2 (FPR2), a G-protein coupled receptor involved in inflammation regulation. Genetic ablation of the Fpr2 gene or treatment with an FPR2 antagonist abolishes COL-induced efferocytosis, anti-colitis activity and LAP. Taken together, our study identifies FPR2 as a potential target for modulating LC3-associated efferocytosis to alleviate intestinal inflammation and highlights the therapeutic value of COL, a natural and biased agonist of FPR2, in the treatment of inflammatory bowel disease.


Asunto(s)
Colitis , Ratones , Animales , Fagocitosis , Transducción de Señal , Inflamación/genética , Macrófagos/metabolismo , Colitis/metabolismo
8.
Aging Dis ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37815900

RESUMEN

Despite decades of research being conducted to understand what physiological deficits in the brain are an underlying basis of psychiatric diseases like schizophrenia, it has remained difficult to establish a direct causal relationship between neuronal dysfunction and specific behavioral phenotypes. Moreover, it remains unclear how metabolic processes, including amino acid metabolism, affect neuronal function and consequently modulate animal behaviors. PRODH, which catalyzes the first step of proline degradation, has been reported as a susceptibility gene for schizophrenia. It has consistently been shown that PRODH knockout mice exhibit schizophrenia-like behaviors. However, whether the loss of PRODH directly impacts neuronal function or whether such neuronal deficits are linked to schizophrenia-like behaviors has not yet been examined. Herein, we first ascertained that dysregulated proline metabolism in humans is associated with schizophrenia. We then found that PRODH was highly expressed in the oreins layer of the mouse dorsal hippocampus. By using AAV- mediated shRNA, we depleted PRODH expression in the mouse dorsal hippocampus and subsequently observed hyperactivity and impairments in the social behaviors, learning, and memory of these mice. Furthermore, the loss of PRODH led to altered neuronal morphology and function both in vivo and in vitro. Our study demonstrates that schizophrenia-like behaviors may arise from dysregulated proline metabolism due to the loss of PRODH and are associated with altered neuronal morphology and function in mice.

9.
Aging Dis ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815909

RESUMEN

Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.

10.
Prog Neurobiol ; 231: 102530, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37739206

RESUMEN

Different dopaminergic (DA) neuronal subgroups exhibit distinct vulnerability to stress, while the underlying mechanisms are elusive. Here we report that the transient receptor potential melastatin 2 (TRPM2) channel is preferentially expressed in vulnerable DA neuronal subgroups, which correlates positively with aging in Parkinson's Disease (PD) patients. Overexpression of human TRPM2 in the DA neurons of C. elegans resulted in selective death of ADE but not CEP neurons in aged worms. Mechanistically, TRPM2 activation mediates FZO-1/CED-9-dependent mitochondrial hyperfusion and mitochondrial permeability transition (MPT), leading to ADE death. In mice, TRPM2 knockout reduced vulnerable substantia nigra pars compacta (SNc) DA neuronal death induced by stress. Moreover, the TRPM2-mediated vulnerable DA neuronal death pathway is conserved from C. elegans to toxin-treated mice model and PD patient iPSC-derived DA neurons. The vulnerable SNc DA neuronal loss is the major symptom and cause of PD, and therefore the TRPM2-mediated pathway serves as a promising therapeutic target against PD.


Asunto(s)
Proteínas de Caenorhabditis elegans , Enfermedad de Parkinson , Canales Catiónicos TRPM , Humanos , Ratones , Animales , Anciano , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPM/metabolismo , Caenorhabditis elegans/metabolismo , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
11.
Burns Trauma ; 11: tkad033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675267

RESUMEN

Traumatic brain injury (TBI) disrupts normal brain function and is associated with high morbidity and fatality rates. TBI is characterized as mild, moderate or severe depending on its severity. The damage may be transient and limited to the dura matter, with only subtle changes in cerebral parenchyma, or life-threatening with obvious focal contusions, hematomas and edema. Blood vessels are often injured in TBI. Even in mild TBI, dysfunctional cerebral vascular repair may result in prolonged symptoms and poor outcomes. Various distinct types of cells participate in vascular repair after TBI. A better understanding of the cellular response and function in vascular repair can facilitate the development of new therapeutic strategies. In this review, we analyzed the mechanism of cerebrovascular impairment and the repercussions following various forms of TBI. We then discussed the role of distinct cell types in the repair of meningeal and parenchyma vasculature following TBI, including endothelial cells, endothelial progenitor cells, pericytes, glial cells (astrocytes and microglia), neurons, myeloid cells (macrophages and monocytes) and meningeal lymphatic endothelial cells. Finally, possible treatment techniques targeting these unique cell types for vascular repair after TBI are discussed.

12.
Adv Nutr ; 14(6): 1326-1336, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567449

RESUMEN

There is no comprehensive review of the evidence to support omega-3 polyunsaturated fatty acids (PUFAs) as a relatively safe and tolerable intervention. This study aimed to provide a meta-analytic and comprehensive review on the adverse effects of all kinds of ω-3 PUFA supplementation reported in randomized controlled trials (RCTs) in human subjects. A systematic review of RCTs published between 1987 and 2023 was carried out based on searches of 8 electronic databases. All RCTs that compared the adverse effects of ω-3 PUFAs containing eicosapentaenoic acid, docosahexaenoic acid, or both compared with controls (a placebo or a standard treatment) were included. The primary outcome was the adverse effects related to ω-3 PUFA prescription. A total of 90 RCTs showed that the ω-3 PUFA group, when compared with the placebo, had significantly higher odds of occurrence of diarrhea (odds ratio [OR] = 1.257, P = 0.010), dysgeusia (OR = 3.478, P < 0.001), and bleeding tendency (OR = 1.260, P = 0.025) but lower rates of back pain (OR = 0.727, P < 0.001). The subgroup analysis showed that the prescription ω-3 PUFA products (RxOME3FAs) had higher ω-3 PUFA dosages than generic ω-3 PUFAs (OME3FAs) (3056.38 ± 1113.28 mg/d compared with 2315.92 ± 1725.61 mg/d), and studies on RxOME3FAs performed more standard assessments than OME3FAs on adverse effects (63% compared with 36%). There was no report of definite ω-3 PUFA-related serious adverse events. The subjects taking ω-3 PUFAs were at higher odds of experiencing adverse effects; hence, comprehensive assessments of the adverse effects may help to detect minor/subtle adverse effects associated with ω-3 PUFAs. This study was registered at PROSPERO as CRD42023401169.


Asunto(s)
Ácidos Grasos Omega-3 , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Ácidos Grasos Omega-3/efectos adversos , Ácido Eicosapentaenoico/uso terapéutico , Ácidos Grasos Insaturados , Suplementos Dietéticos
13.
Free Radic Biol Med ; 208: 299-308, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625657

RESUMEN

Progressive death of dopaminergic (DA) neurons is the main cause of Parkinson's disease (PD). The discovery of drug candidates to prevent DA neuronal death is required to address the pathological aspects and alter the process of PD. Azoramide is a new small molecule compound targeting ER stress, which was originally developed for the treatment of diabetes. In this study, pre-treatment with Azoramide was found to suppress mitochondria-targeting neurotoxin MPP+-induced DA neuronal death and locomotor defects in zebrafish larvae. Further study showed that pre-treatment with Azoramide significantly attenuated MPP+-induced SH-SY5Y cell death by reducing aberrant changes in nuclear morphology, mitochondrial membrane potential, intracellular reactive oxygen species, and apoptotic biomarkers. The mechanistic study revealed that Azoramide was able to up-regulate the expression of ER chaperone BiP and thereby prevented MPP+-induced BiP decrease. Furthermore, pre-treatment with Azoramide failed to suppress MPP+-induced cytotoxicity in the presence of the BiP inhibitor HA15. Taken together, these results suggested that Azoramide is a potential neuroprotectant with pro-survival effects against MPP+-induced cell death through up-regulating BiP expression.


Asunto(s)
1-Metil-4-fenilpiridinio , Neuronas Dopaminérgicas , Chaperón BiP del Retículo Endoplásmico , Neuroblastoma , Animales , Humanos , 1-Metil-4-fenilpiridinio/toxicidad , Apoptosis , Muerte Celular , Línea Celular Tumoral , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuroblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra/metabolismo , Chaperón BiP del Retículo Endoplásmico/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico/metabolismo
14.
Aging Dis ; 14(4): 1031-1034, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163436

RESUMEN

Growing evidence suggests that the prevalence of neurodegenerative diseases (NDs) is on the rise with the aged population with substantially overlapping clinical and pathological features. The journal "Aging & Disease" portals are always responsive to publishing cutting-edge research on age-related neurodegeneration. Even though outstanding progress has recently been made in understanding NDs, the underlying mechanisms involved in neuronal degeneration are yet to be deciphered and addressed. There is credible evidence showing multiple links between mitochondria and NDs, gradually becoming the hotspot in mechanistic or drug development research. The editorial aims to reflect on and discuss some interesting and unique results from the papers published in "Aging & Disease" during the past three years (2020 - 2022).

15.
Cell Rep ; 42(1): 111986, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640348

RESUMEN

Membraneless condensates, such as stress granules (SGs) and processing bodies (P-bodies), have attracted wide attention due to their unique feature of rapid response to stress without first requiring nuclear feedback. In this study, we identify diaphanous-related formin 3 (DIAPH3), an actin nucleator, as a scaffold protein to initiate liquid-liquid phase separation (LLPS) and form abundant cytosolic phase-separated DIAPH3 granules (D-granules) in mammalian cells such as HeLa, HEK293, and fibroblasts under various stress conditions. Neither mRNAs nor known stress-associated condensate markers, such as G3BP1, G3BP2, and TIA1 for SGs and DCP1A for P-bodies, are detected in D-granules. Using overexpression and knockout of DIAPH3, pharmacological interventions, and optogenetics, we further demonstrate that stress-induced D-granules spatially sequester DIAPH3 within the condensation to inhibit the assembly of actin filaments in filopodia. This study reveals that D-granules formed by LLPS act as a regulatory hub for actin cytoskeletal remodeling in response to stress.


Asunto(s)
Actinas , ADN Helicasas , Animales , Humanos , Células HEK293 , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Citoesqueleto de Actina , Mamíferos , Forminas
16.
Brain Behav Immun ; 107: 292-294, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349642

RESUMEN

Psychoneuroimmunology (PNI)-the burgeoning concept in recent years, can potentially contribute to developing effective treatments for mental health disorders. Despite the advancement in the modern pharmacological approach for mental disorders, especially Western medicine attributed explicitly to interacting with a specific target has given rise to unmet needs, and treatment failure has led to the proliferation and exploration of traditional and alternative therapies. As research into these exciting under-explored traditional treatment approaches continues to evolve at an unprecedented pace, the need to gain vital insights into the potentiality and mechanism of action in neuropsychiatric disorders has resulted in the current Special Issue. This Special Issue is devoted to psychoneuroimmunology, focusing on introducing the recent advances with traditional and alternative medications in East Asia at the interface of immunology, neurosciences, molecular psychiatry and behavioural medicine neurosciences.


Asunto(s)
Encéfalo , Psiconeuroinmunología , Humanos , Asia Oriental
17.
Front Pharmacol ; 13: 963327, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532787

RESUMEN

Parkinson's disease (PD) is an age-related chronic neurodegenerative disease caused by the death and degeneration of dopaminergic neurons in the substantia nigra of the midbrain. The decrease of the neurotransmitter dopamine in the patient's brain leads to various motor symptoms. PD drugs mainly enhance dopamine levels but cannot prevent or slow down the loss of dopaminergic neurons. In addition, they exhibit significant side effects and addiction issues during long-term use. Therefore, it is particularly urgent to develop novel drugs that have fewer side effects, can improve PD symptoms, and prevent the death of dopaminergic neurons. The rhizome of Gastrodia elata Blume (Tianma) is a well-known medicinal herb and has long been used as a treatment of nervous system-related diseases in China. Several clinical studies showed that formula comprising Tianma could be used as an add-on therapy for PD patients. Pharmacological studies indicated that Tianma and its bioactive components can reduce the death of dopaminergic neurons, α-synuclein accumulation, and neuroinflammation in various PD models. In this review, we briefly summarize studies regarding the effects of Tianma and its bioactive components' effects on major PD features and explore the potential use of Tianma components for the treatment of PD.

18.
Cell Biosci ; 12(1): 131, 2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-35965317

RESUMEN

BACKGROUND: The mammalian target of rapamycin (mTOR) plays a critical role in controlling cellular homeostasis, and its dysregulation has been implicated in Alzheimer's disease (AD). Presenilin-1 (PS1) mutations account for the most common causes of familial Alzheimer's disease (FAD); however, whether PS1 mutation causes mTOR dysregulation in human neurons remains a key unresolved issue. METHODS: We generated heterozygotes and homozygotes of PS1 F105C knock-in mutation in human induced pluripotent stem cells (iPSCs) via CRISPR/Cas9/piggyback-based gene editing and differentiated them into human neurons. Secreted Aß and tau accumulation were determined by ELISA assay, immunofluorescence staining, and western blotting analysis. mTOR signaling was evaluated by western blotting analysis, immunofluorescence staining, and co-immunoprecipitation. Autophagy/lysosome activities were determined by LC3-based assay, LysoTracker Red staining, and DQ-Red BSA staining. RESULTS: Through comparison among these isogenic neurons, PS1 F105C mutant neurons exhibited elevated Aß and tau accumulation. In addition, we found that the response of mTORC1 to starvation decreases in PS1 F105C mutant neurons. The Akt/mTORC1/p70S6K signaling pathway remained active upon EBSS starvation, leading to the co-localization of the vast majority of mTOR with lysosomes. Consistently, PS1 F105C neurons displayed a significant decline in starvation-induced autophagy. Notably, Torin1, a mTOR inhibitor, could efficiently reduce prominent tau pathology that occurred in PS1 F105C neurons. CONCLUSION: We demonstrate that Chinese PS1 F105C mutation causes dysregulation of mTORC1 signaling, contributing to tau accumulation in human neurons. This study on inherited FAD PS1 mutation provides unprecedented insights into our understanding of the molecular mechanisms of AD. It supports that pharmaceutical blocking of mTOR is a promising therapeutic strategy for the treatment of AD.

19.
Theranostics ; 12(4): 1738-1755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198070

RESUMEN

Rationale: Impairment of autophagy maturation has been implicated in Alzheimer's disease (AD) pathogenesis. However, the mechanism for this impairment has not been elucidated, and whether enhancing autophagy maturation is a viable therapeutic strategy for AD has not been verified. Methods: We examined the autophagosome maturation process in AD cell and mouse models by immunoblotting. To further understand the changes in autophagy in AD brains, we analyzed the transcriptome by RNA-sequencing and measured the expression of RAB7, CCZ1 and MON1A. We performed brain stereotaxic injections of AAV into 3xTg AD mouse brain and WT mouse brain to over-express MON1A/CCZ1 or knockdown MON1A. For in vitro studies, we purified autophagosomes, and determined GTP-RAB7 level in autophagosome fractions by GST-R7BD affinity-isolation assay. Results: We report that the active form of RAB7 was selectively decreased in autophagosome fractions isolated from cells and tissues of AD models, and that this decrease was accompanied by impaired activity of its guanine nucleotide exchange factor (GFE) CCZ1-MON1A. Overexpressing CCZ1-MON1A increased the active form of RAB7, enhanced autophagosome maturation, and promoted degradation of APP-CTFs, Aß and P-tau in an autophagy-dependent manner in cells and a mouse AD model. Conclusions: Our data reveals that CCZ1-MON1A-RAB7 complex dysfunction is a potential mechanism for autophagosome maturation defects in AD, and advances the possibility that enhancing autophagosome maturation is a novel therapeutic strategy against AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Autofagosomas/metabolismo , Autofagia , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido , Ratones
20.
Nat Aging ; 2(4): 348-364, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-37117750

RESUMEN

Frailty is an intermediate status of the human aging process, associated with decompensated homeostasis and death. The immune phenotype of frailty and its underlying cellular and molecular processes remain poorly understood. We profiled 114,467 immune cells from cord blood, young adults and healthy and frail old adults using single-cell RNA and TCR sequencing. Here we show an age-dependent accumulation of transcriptome heterogeneity and variability in immune cells. Characteristic transcription factors were identified in given cell types of specific age groups. Trajectory analysis revealed cells from non-frail and frail old adults often fall into distinct paths. Numerous TCR clonotypes were shared among T-cell subtypes in old adults, indicating differential pluripotency and resilience capabilities of aged T cells. A frailty-specific monocyte subset was identified with exclusively high expression of long noncoding RNAs NEAT1 and MALAT1. Our study discovers human frailty-specific immune cell characteristics based on the comprehensive dimensions in the immune landscape of aging and frailty.


Asunto(s)
Fragilidad , Anciano , Adulto Joven , Humanos , Anciano Frágil , Envejecimiento , Sistema Inmunológico , Receptores de Antígenos de Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...