Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(41): 15656-15666, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37747788

RESUMEN

Nanoplastics (NPs) have different colors, which could affect their photoaging processes in aquatic environments. This study investigated the effects of irradiation on physicochemical properties and aggregation kinetics of five colored NPs. Photodegradation rates and photooxidation degrees ranked white ≈ yellow > red > blue ≈ black NPs, indicating that NPs with longer color wavelengths photoaged faster. The discoloration process followed color fading (2-14 days, except for white NPs), yellowing (10-16 days), yellow fading (18 days), and turning transparent (20-22 days). White NPs exhibited a different photoaging sequence (C-H → C-OH → C═O → O-C═O) from others. Photodegradation was mainly controlled by singlet oxygen, producing 13 chemicals that were mostly organic acids. The overall colloidal stability of pristine NPs ranked blue > yellow > red > black > white. Irradiation for 16 days retarded aggregation of white and other NPs in NaCl solution, raising the critical coagulation concentration (CCC) by 82.14 and 0.85-7.90%, respectively. Contrarily, irradiation promoted aggregation in CaCl2 solution by reducing the CCC of white (67.37%) and other (33.33-37.58%) NPs. The findings demonstrate that colored NPs underwent photoaging processes different from white/transparent NPs, which were focused by previous work, highlighting the important role of color in their environmental fate and transport.

2.
Environ Int ; 170: 107628, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36395559

RESUMEN

Nanoplastics are inevitably ingested into human gastric environment, wherein their aggregation kinetics and interactions with gastric constituents remain unclear. This study investigated the early-stage (20 min) and long-term (1-6 h) aggregation kinetics of four commonly-found polystyrene nanoplastics (PSNPs) including NP100 (100-nm), A-NP100 (100-nm, amino-modified), C-NP100 (100-nm, carboxyl-modified), and NP500 (500-nm) under gastric conditions. Five simulated human gastric fluids (SGFs) including SGF1-3 (0-3.2 g/L pepsin and 34.2 mM NaCl), SGF4 (400 mM glycine), and SGF5 (nine constituents), three pH (2, fasted state; 3.5, late-fed state; and 5, early-fed state), and 1-100 mg/L PSNPs were examined. Aggregation rates ranked NP100 > A-NP100 ≈ C-NP100 > NP500, SGF5 > SGF4 > SGF3 > SGF2 > SGF1, and pH 2 > 3.5 > 5. Increasing PSNP concentration enhanced aggregation rate up to 13.82 nm/s. Aggregation behavior generally followed the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Pepsin, glycine, and proteose-peptone strongly influenced PSNP stability via electrostatic interaction and steric hindrance imparted by protein corona. Freundlich isotherm suggested that PSNPs adsorbed organic constituents following lysozyme > porcine bile > proteose-peptone > pepsin > glycine > D-glucose, inducing changes in constituent structure and PSNP properties. These findings provide insights on the transport of nanoplastics in the gastric environments.


Asunto(s)
Poliestirenos , Humanos , Animales , Porcinos
3.
Environ Sci Technol ; 56(23): 17153-17165, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36242560

RESUMEN

Dermal penetration potentials of titanium dioxide nanoparticles (TiO2 NPs) may be affected by aggregation upon contact with sweat. This study investigated the aggregation kinetics of three TiO2 NPs in thirty human sweat samples and four artificial sweat standards. Effects of particle concentration, sweat type, and inorganic (sodium chloride, disodium hydrogen phosphate, and sodium dihydrogen phosphate) and organic (l-histidine, lactic acid, and urea) constituents were examined. Three TiO2 NPs remained colloidally stable in >20/30 human sweat samples and showed significant negative correlations (P < 0.01) between aggregation rates and |zeta potentials|. They aggregated rapidly over 20 min to >750 nm in three artificial sweat standards, while remained more stable in the International-Standard-Organization-pH-5.5 standard. Aggregation behaviors of three TiO2 NPs mostly followed the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, allowing for determining their critical coagulation concentrations in inorganic constituents (15-491 mM) and Hamaker constants (3.3-7.9 × 10-21 J). Higher concentrations of particles, inorganic constituents, and l-histidine destabilized three TiO2 NPs, whereas urea inhibited aggregation. Three TiO2 NPs adsorbed organic sweat constituents via complexation with amino or carboxyl groups, with isotherms following the Langmuir model. Correlation analyses further suggested that the adsorbed organic constituents may stabilize three TiO2 NPs against aggregation in sweat by steric hindrance.


Asunto(s)
Nanopartículas , Sudor , Humanos , Histidina , Titanio , Cinética , Urea
4.
Water Res ; 201: 117385, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34225234

RESUMEN

Soot nanoparticles (SNPs) undergo aging processes in aqueous systems, altering their physicochemical properties and affecting their fate and transport. This study investigated the aging effects via ultraviolet irradiation on aggregation kinetics of SNPs in water. The results showed that, compared to fresh SNPs, those irradiated for 1 day aggregated more easily in NaCl and CaCl2 solutions, with reduction of critical coagulation concentrations by 72% and 40%, respectively. Similar phenomena were found in additional six electrolyte solutions, and SNPs irradiated for > 3 days had no measurable difference in aggregation rate. The aggregation-enhancement of irradiated SNPs was more prominent at low electrolyte concentrations and pH > 4. However, in the presence of macromolecules, irradiated SNPs could be stabilized against aggregation via steric hindrance with strength of bovine serum albumin > humic acid > alginate > fulvic acid, whereas alginate further destabilized aged SNPs via calcium bridging. The fitted Hamaker constant increased from 7.8 × 10-20 (fresh) to 1.2 × 10-19 J (7-day irradiated), suggesting that decarboxylation during irradiation may weaken electrical repulsion and enhance van der Waals attraction, promoting aggregation. These results demonstrated the vital role of UV-induced aging in fate and transport of SNPs in wet environments.


Asunto(s)
Nanopartículas , Hollín , Sustancias Húmicas/análisis , Cinética , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...