Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(14): e2303740, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38413194

RESUMEN

Avascular dense connective tissues (e.g., the annulus fibrosus (AF) rupture, the meniscus tear, and tendons and ligaments injury) repair remains a challenge due to the "biological barrier" that hinders traditional drug permeation and limits self-healing of the injured tissue. Here, accurate delivery of nitric oxide (NO) to penetrate the "AF biological barrier" is achieved thereby enabling programmable AF repair. NO-loaded BioMOFs are synthesized and mixed in a modified polyvinyl alcohol and PCL-composited electrospun fiber membrane with excellent reactive oxygen species-responsive capability (LN@PM). The results show that LN@PM could respond to the high oxidative stress environment at the injured tissue and realize continuous and substantial NO release. Based on low molecular weight and lipophilicity, NO could penetrate through the "biological barrier" for accurate AF drug delivery. Moreover, the dynamic characteristics of the LN@PM reaction can be matched with the pathological microenvironment to initiate programmable tissue repair including sequential remodeling microenvironment, reprogramming the immune environment, and finally promoting tissue regeneration. This tailored programmable treatment strategy that matches the pathological repair process significantly repairs AF, ultimately alleviating intervertebral disc degeneration. This study highlights a promising approach for avascular dense connective tissue treatment through intelligent NO release, effectively overcoming "AF biological barriers" and programmable treatment.


Asunto(s)
Óxido Nítrico , Óxido Nítrico/metabolismo , Animales , Anillo Fibroso/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Tejido Conectivo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Alcohol Polivinílico/química , Degeneración del Disco Intervertebral/metabolismo , Masculino , Ratas , Ratones , Conejos
2.
ACS Appl Mater Interfaces ; 16(1): 95-110, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38157482

RESUMEN

Nanozymes, emerging nanomaterials for wound healing, exhibit enzyme-like activity to modulate the levels of reactive oxygen species (ROS) at wound sites. Yet, the solo regulation of endogenous ROS by nanozymes often falls short, particularly in chronic refractory wounds with complex and variable pathological microenvironments. In this study, we report the development of a multifunctional wound dressing integrating a conventional alginate (Alg) hydrogel with a newly developed biodegradable copper hydrogen phosphate (CuP) nanozyme, which possesses good near-infrared (NIR) photothermal conversion capabilities, sustained Cu ion release ability, and pH-responsive peroxidase/catalase-mimetic catalytic activity. When examining acute infected wounds characterized by a low pH environment, the engineered Alg/CuP composite hydrogels demonstrated high bacterial eradication efficacy against both planktonic bacteria and biofilms, attributed to the combined action of catalytically generated hydroxyl radicals and the sustained release of Cu ions. In contrast, when applied to chronic diabetic wounds, which typically have a high pH environment, these composite hydrogels exhibit significant angiogenic performance. This is driven by the provision of catalytically generated dissolved oxygen and a beneficial supplement of Cu ions released from the degradable CuP nanozyme. Further, a mild thermal effect induced by NIR irradiation amplifies the catalytic activities and bioactivity of Cu ions, thereby enhancing the healing process of both infected and diabetic wounds. Our study validates that the synergistic integration of photothermal effects, catalytic activity, and released Cu ions can concurrently yield high antibacterial efficiency and tissue regenerative activity, rendering it highly promising for various clinical applications in wound healing.


Asunto(s)
Cobre , Diabetes Mellitus , Especies Reactivas de Oxígeno , Vendajes , Alginatos , Antibacterianos/farmacología , Hidrogeles/farmacología , Iones , Concentración de Iones de Hidrógeno
3.
Adv Healthc Mater ; 12(24): e2300546, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37260366

RESUMEN

Vital pulp therapy (VPT) is considered a conservative treatment for preserving pulp viability in caries-induced dental pulp infections. However, bacterial contamination negatively affects dentine-pulp complex repair. The common capping materials show limited antimicrobial effects against some microorganisms. To improve the VPT efficacy, capping materials with increased antibacterial properties and enhanced odontogenic and angiogenic activities are needed. Herein, a SrCuSi4 O10 /gelatin methacrylate(SC/Gel) composite hydrogel has been proposed for infected dental pulp treatment. SrCuSi4 O10 (SC) is a microscale bioceramic composed of assembled multilayered nanosheets that possesses good near-infrared photothermal conversion ability and multiple bioactivities due to sustained Sr2+ , Cu2+ , and SiO3 2- ion release. It is shown that the SC/Gel composite hydrogel efficiently eliminates Streptococcus mutans and Lactobacillus casei and inhibits biofilm formation under photothermal heating, while the ion extract from SC promotes odontogenesis of rat dental pulp stem cells and angiogenesis of human umbilical vein endothelial cells. The as-designed therapeutic effect of SC/Gel composite hydrogel-mediated VPT has been proven in a rat dental pulp infection model and yielded improved dentine-pulp complex repair compared with the commercially used iRoot® BP Plus. This study suggests that the SC/Gel composite hydrogel is a potential pulp-capping material with improved effects on dentine-pulp complex repair in infected pulp.


Asunto(s)
Pulpa Dental , Hidrogeles , Humanos , Ratas , Animales , Hidrogeles/farmacología , Células Endoteliales , Regeneración , Antibacterianos/farmacología
4.
ACS Appl Mater Interfaces ; 15(6): 7841-7854, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36719417

RESUMEN

In clinical practice, it has become urgent to develop multifunctional wound dressings that can combat infection and prompt wound healing simultaneously. In this study, we proposed a polydopamine/alginate/nanoselenium composite hydrogel (Alg-PDA-Se) for the treatment of infected wounds. In particular, polydopamine endows the composite hydrogel with controllable near-infrared photothermal properties, while low-dosage selenium nanoparticles (Se NPs) offer excellent anti-oxidation, anti-inflammatory, pro-proliferative, pro-migration, and pro-angiogenic performances, which are verified by multiple cells, including macrophages, fibroblasts, and endothelial cells. More interestingly, the combination of mild temperature with low-dosage Se NPs produces a synergistic effect on combating both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and promoting the healing of bacteria-infected wounds in vivo. We anticipate that the designed composite hydrogel might be a potential candidate for anti-infection bioactive dressing.


Asunto(s)
Calor , Infección de Heridas , Humanos , Hidrogeles/farmacología , Células Endoteliales , Escherichia coli , Staphylococcus aureus , Alginatos , Antibacterianos/farmacología , Infección de Heridas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA