Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Transl Oncol ; 45: 101977, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38728871

RESUMEN

BACKGROUND: High mobility group box 2 (HMGB2) is considered as a biomarker of poor prognosis in various cancers.This study aims to investigate the effect and mechanism of HMGB2 in gliomas. METHODS: With the glioma related on-line and our local hospital databases, the expression differences of HMGB2,Kaplan-Meier survival analysis and COX regression analysis were performed.The correlation analysis between the clinicopathological features and imaging parameters with the HMGB2 expression had been done. Then GSEA and PPI networks were carried out to find out the most significant pathway. The pathway inhibitor was applied to verify HMGB2's participation. CCK8,EDU assays,γ-H2AX immunofluorescence staining and colony formation assay were conducted to observe effects on glioma cells. RESULTS: Available datasets showed that HMGB2 was highly expressed in glioma and patients with high expression of HMGB2 had poorer prognosis and molecular characteristics. Protein level evidence of western blot and immunohistochemistry from our center supported the conclusions above. Analysis on imaging features suggested that HMGB2 expression level had an inverse association with ADCmean but positively with the thickness of enhancing margin. Results from GSEA and PPI network analysis exhibited that HMGB2 was involved in base excision repair (BER) signaling pathway. Experimental evidence demonstrated that the overexpression of HMGB2 promoted the proliferation of glioma cells and enhanced the radio-resistance. CONCLUSIONS: HMGB2 could promote glioma development and enhance the radioresistance of glioma cells, potentially related to the BER pathway, suggesting it may serve as an underlying biomarker for patients with glioma.

3.
Plant Cell Environ ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516721

RESUMEN

The root rot mainly caused by Fusarium solani is a bottleneck in the cultivation of Panax notoginseng. In this study, we reported a gene encoding a plant cell wall structural protein, P. notoginseng proline-rich protein (PnPRPL1), whose transcription was upregulated by F. solani and induced by some hormone signals. The PnPRPL1 recombinant protein significantly inhibited the growth and conidial germination of the root rot pathogens. Downregulation of PnPRPL1 by RNA interference (RNAi) in P. notoginseng leaves increased the susceptibility to F. solani, whereas overexpression of PnPRPL1 in tobacco (Nicotiana tabacum) enhanced the resistance to F. solani. Compared with wild-type tobacco, the PnPRPL1-overexpressing transgenic tobacco had higher reactive oxygen species (ROS)-scavenging enzyme activities, lower ROS levels, and more lignin and callose deposition. The opposite results were obtained for the P. notoginseng expressing PnPRPL1 RNAi fragments. Furthermore, the PnPRPL1 promoter transcription activity was induced by several plant hormones and multiple stress stimuli. In addition, the transcription factor PnWRKY27 activated the expression of PnPRPL1 by directly binding to the promoter region. Thus, PnPRPL1, which is positively regulated by a WRKY transcription factor, encodes an antimicrobial protein that also mediates ROS homoeostasis and callose/lignin deposition during the response to F. solani infection.

4.
Opt Lett ; 49(4): 993-996, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359244

RESUMEN

In recent years, neuromorphic computing is recognized as a promising path to further improve the efficiency of integrated computing system in the post-Moore era, relying on its high parallelism. As a key fundamental element in hardware-implementing neuromorphic system, the synaptic device has made substantial research progress. Among these, SiO2 trapping-based memristive devices generally have systematically integrated merits, such as ease of fabrication and high CMOS process compatibility, but electrochemical activity to oxygen makes them unreliable for operating in air. Here, by using ultrathin Si3N4 as a physical isolation layer, we have obtained a robust memristive device based on SiO2 trapping although operating in air. Further study of Si3N4 thickness dependence has demonstrated that 7 nm is suggested as the most favorable thickness for reliable and flexible programming, and that an inherent isolating mechanism is 'switching-on' for an electron but 'switching-off' for large-sized oxygen molecules. Based on a device with 7 nm Si3N4, we have mimicked various modes of synaptic plasticities. These results could thus not only increase the prospects of using SiO2 trapping in memristive applications but also provide an effective path to improve the robustness of these SiO2-based applications against ambient air.

5.
Mol Med ; 30(1): 18, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302877

RESUMEN

BACKGROUND: Ischemia-reperfusion (I/R) injury is a major cause of surgical skin flap compromise and organ dysfunction. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, with tissue regenerative potential. PRP has shown promise in multiple I/R-induced tissue injuries, but its effects on skin flap injury remain unexplored. METHODS: We evaluated the effects of PRP on I/R-injured skin flaps, optimal timing of PRP administration, and the involved mechanisms. RESULTS: PRP protected against I/R-induced skin flap injury by improving flap survival, promoting blood perfusion and angiogenesis, suppressing oxidative stress and inflammatory response, and reducing apoptosis, at least partly via deactivating Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signalling pathway. PRP given before ischemia displayed overall advantages over that given before reperfusion or during reperfusion. In addition, PRP pretreatment had a stronger ability to reverse I/R-induced JAK/STAT activation and apoptosis than AG490, a specific inhibitor of JAK/STAT signalling. CONCLUSIONS: This study firstly demonstrates the protective role of PRP against I/R-injured skin flaps through negative regulation of JAK/STAT activation, with PRP pretreatment showing optimal therapeutic effects.


Asunto(s)
Plasma Rico en Plaquetas , Daño por Reperfusión , Ratones , Animales , Quinasas Janus , Transducción de Señal , Factores de Transcripción STAT , Daño por Reperfusión/prevención & control , Daño por Reperfusión/tratamiento farmacológico , Isquemia , Reperfusión
6.
Int J Biol Macromol ; 256(Pt 1): 128334, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007032

RESUMEN

Hypertrophic scars (HS) and keloids (KD) are lesions that develop as a result of excessive fibroblast proliferation and collagen deposition in response to dermal injury, leading to dysregulation of the inflammatory, proliferative, and remodeling phases during wound healing. HS and KD affect up to 90 % of the population and are associated with lower quality of life, physical health, and mental status in patients. Efficient targeted treatment represents a significant challenge, primarily due to our limited understanding of their underlying pathogenesis. Non-coding RNAs (ncRNAs), which constitute a significant portion of the human transcriptome with minimal or no protein-coding capacity, have been implicated in various cellular physiologies and pathologies and may serve as diagnostic indicators or therapeutic targets. NcRNAs have been found to be aberrantly expressed and regulated in HS and KD. This review provides a summary of the expression profiles and molecular mechanisms of three common ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in HS and KD. It also discusses their potential as biomarkers for the diagnosis and treatment of these diseases and provides novel insights into epigenetic-based diagnosis and treatment strategies for HS and KD.


Asunto(s)
Cicatriz Hipertrófica , Queloide , MicroARNs , ARN Largo no Codificante , Humanos , Cicatriz Hipertrófica/genética , Queloide/genética , Calidad de Vida , Cicatrización de Heridas , MicroARNs/genética
7.
Heliyon ; 9(12): e22520, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076148

RESUMEN

Background: In addition to its barrier function, the skin plays a crucial role in maintaining the stability of the body's internal environment and normal physiological functions. When the skin is damaged, it is important to select proper dressings as temporary barriers to cover the wound, which can exert significant effects on defence against microbial infection, maintaining normal tissue/cell functions, and coordinating the process of wound repair and regeneration. It now forms an important approach in clinic practice to facilitate wound repair. Search strategies: We conducted a comprehensive literature search using online databases including PubMed, Web of Science, MEDLINE, ScienceDirect, Wiley Online Library, CNKI, and Wanfang Data. In addition, information was obtained from local and foreign books on biomaterials science and traumatology. Results: This review focuses on the efficacy and principles of functional dressings for anti-bacteria, anti-infection, anti-inflammation, anti-oxidation, hemostasis, and wound healing facilitation; and analyses the research progress of dressings carrying living cells such as fibroblasts, keratinocytes, skin appendage cells, and stem cells from different origins. We also summarize the recent advances in intelligent wound dressings with respect to real-time monitoring, automatic drug delivery, and precise adjustment according to the actual wound microenvironment. In addition, this review explores and compares the characteristics, advantages and disadvantages, mechanisms of actions, and application scopes of dressings made from different materials. Conclusion: The real-time and dynamic acquisition and analysis of wound conditions are crucial for wound management and prognostic evaluation. Therefore, the development of modern dressings that integrate multiple functions, have high similarity to the skin, and are highly intelligent will be the focus of future research, which could drive efficient wound management and personalized medicine, and ultimately facilitate the translation of health monitoring into clinical practice.

8.
Phys Chem Chem Phys ; 25(36): 24721-24732, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37670691

RESUMEN

The rational design and development of an efficient bifunctional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the key to developing new renewable energy storage and conversion technologies. Transition metal nitrides (TMNs) have shown excellent energy storage and electrochemistry potential due to their unique electronic structure and physicochemical properties. In this paper, based on the first-principles method of density functional theory (DFT), a series of efficient and stable bifunctional single-atom catalysts (SACs) were designed on Mo2N by introducing transition metal atoms as active sites, and the effects of different TM atoms on the catalytic performance of 2D-Mo2N (Two dimensional Mo2N) were evaluated. The calculation results show that TM@Mo2N exhibits excellent stability and good conductivity, which is conducive to electron transfer during the electrocatalytic reaction. Among these SACs, the Au@Mo2N single-atom catalyst has a very low OER overpotential (0.36 V), exhibiting high OER activity. Meanwhile, Au@Mo2N also exhibits excellent ORR performance with a low overpotential of 0.4 V, indicating that Au@Mo2N is the best OER/ORR bifunctional catalyst. This work provides a feasible solution for developing transition metal bifunctional electrocatalysts. Au@Mo2N is expected to replace traditional commercial Pt catalyst materials and become a catalyst with excellent performance in fuel cell modules.

9.
Opt Express ; 31(19): 31061-31071, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710634

RESUMEN

In the post-Moore era, the gradually saturated computational capability of conventional digital computers showing the opposite trend as the exponentially increasing data volumes imperatively required a platform or technology to break this bottleneck. Brain-inspired neuromorphic computing promises to inherently improve the efficiency of information processing and computation by means of the highly parallel hardware architecture to reduce global data transmission. Here, we demonstrate a compact device technology based on the barrier asymmetry to achieve zero-consumption self-powered synaptic devices. In order to tune the device behaviors, the typical chemical doping is used to tailor the asymmetry for energy harvesting. Finally, in our demonstrated devices, the open-circuit voltage (VOC) and power-conversion efficiency (PCE) can be modulated up to 0.77 V and 6%, respectively. Optimized photovoltaic features affords synaptic devices with an outstanding programming weight states, involving training facilitation, stimulus reinforce and consolidation. Based on self-powered system, this work further presents a highly available modulation scheme, which achieves excellent device behaviors while ensuring the zero-energy consumption.

10.
Opt Express ; 31(17): 28575-28585, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710908

RESUMEN

This work demonstrates the efficient tuning of incoherent and coherent coupling between emitters embedded in an epsilon-near-zero (ENZ) waveguide coated with a multilayer graphene. As a result, a tunable two-qubit quantum phase gate based on the ENZ waveguide is realized at the cutoff frequency. Furthermore, due to the vanishingly small permittivity of the ENZ waveguide, all incoherent coupling between any two identical emitters located in the central area of the slit approaches a maximum, enabling near-ideal bipartite and multipartite entanglement. The coherent coupling between emitters is much larger at an operating frequency far from the ENZ resonance frequency than at the cutoff frequency, and the coherent coupling and resulting energy transfer efficiency can also be effectively tuned by the Fermi level of graphene. These results demonstrate an efficiently tunable electro-optical platform for quantum devices.

11.
Langmuir ; 39(36): 12662-12670, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37652891

RESUMEN

This paper reports the adsorption of toxic gases (NO2, SO2, and NH3) on a MoSeTe structure based on first principles. It was found that the gas (NO2, SO2, and NH3) adsorption on a pure MoSeTe monolayer was weak; however, the adsorption performance of these gas molecules on transition-metal-atom-supported MoSeTe monolayers (TM-MoSeTe) was better than that on pure MoSeTe monolayers. In addition, there was more charge transfer between gas molecules and TM-MoSeTe. By comparing the adsorption energy and charge transfer values, the trend of adsorption energy and charge transfer in the adsorption of NO2 and SO2 was determined to be Fe-MoSeTe > Co-MoSeTe > Ni-MoSeTe. For the adsorption of NH3, the effect trend was as follows: Co-MoSeTe > Ni-MoSeTe > Fe-MoSeTe. Finally, by comparing their response times, the better gas sensor was selected. The Ni-MoSeTe system is suitable for NO2 gas sensors, and the Fe-MoSeTe and Co-MoSeTe systems are suitable for SO2 gas sensors. The Fe-MoSeTe, Co-MoSeTe, and Ni-MoSeTe systems are all suitable for NH3 gas sensors. Janus transition-metal dichalcogenides have the potential to be used as gas-sensing and scavenging materials.

12.
BMC Plant Biol ; 23(1): 362, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460949

RESUMEN

BACKGROUND: Panax notoginseng (Burk) F. H. Chen is a valuable traditional Chinese medicinal plant, but its commercial production is seriously affected by root rot caused by some pathogenic fungi, including Fusarium solani. Nevertheless, the genetic breeding for disease resistance of P. notoginseng remains limited. The WRKY transcription factors have been revealed to play important roles in plant defense responses, which might provide an inspiration for resistance improvement in P. notoginseng. RESULTS: In this study, the regulatory mechanism of transcription factor PnWRKY15 on P. notoginseng resistance to F. solani infection was revealed. The suppressed expression of PnWRKY15 via RNA interference increased the sensitivity of P. notoginseng to F. solani and decreased the expression levels of some defense-related genes, including PnOLP1, which encodes an osmotin-like protein that confers resistance to F. solani. Ectopic expression of PnWRKY15 in the model plant tobacco significantly enhanced the resistance to F. solani. Moreover, the transcriptome sequencing analysis discovered that some pathogenesis-related genes were expressed at higher levels in the PnWRKY15-overexpressing tobacco than that in the wild-type tobacco. In addition, the jasmonic acid (JA) and salicylic acid (SA) signaling pathways were evidently induced by PnWRKY15-overexpression, that was evidenced by that the JA and SA contents were significantly higher in the PnWRKY15-overexpressing tobacco than that in the wild-type. Furthermore, PnWRKY15, which was localized in the nucleus, can trans-activate and up-regulate PnOLP1 expression according to the EMSA, yeast one-hybrid and co-expression assays. CONCLUSIONS: PnWRKY15 contributes to P. notoginseng resistance to F. solani by up-regulating the expression of resistance-related gene PnOLP1 and activating JA/SA signaling pathways. These findings will help to further elucidate the transcriptional regulatory mechanism associated with the P. notoginseng defense response to F. solani.


Asunto(s)
Fusarium , Panax notoginseng , Ácido Salicílico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Panax notoginseng/genética , Fitomejoramiento , Transducción de Señal , Fusarium/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
13.
Curr Med Sci ; 43(2): 261-267, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36932303

RESUMEN

OBJECTIVE: Charcot-Marie-Tooth disease (CMT) severely affects patient activity, and may cause disability. However, no clinical treatment is available to reverse the disease course. The combination of CRISPR/Cas9 and iPSCs may have therapeutic potential against nervous diseases, such as CMT. METHODS: In the present study, the skin fibroblasts of CMT type 2D (CMT2D) patients with the c.880G>A heterozygous nucleotide mutation in the GARS gene were reprogrammed into iPSCs using three plasmids (pCXLE-hSK, pCXLE-hUL and pCXLE-hOCT3/4-shp5-F). Then, CRISPR/Cas9 technology was used to repair the mutated gene sites at the iPSC level. RESULTS: An iPSC line derived from the GARS (G294R) family with fibular atrophy was successfully induced, and the mutated gene loci were repaired at the iPSC level using CRISPR/Cas9 technology. These findings lay the foundation for future research on drug screening and cell therapy. CONCLUSION: iPSCs can differentiate into different cell types, and originate from autologous cells. Therefore, they are promising for the development of autologous cell therapies for degenerative diseases. The combination of CRISPR/Cas9 and iPSCs may open a new avenue for the treatment of nervous diseases, such as CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células Madre Pluripotentes Inducidas , Reparación del Gen Blanco , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/metabolismo , Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Reparación del Gen Blanco/métodos
14.
Immunobiology ; 227(6): 152300, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36356459

RESUMEN

AIMS: Dysregulated interferon regulatory factor 8 (IRF8) mediated inducible nitric oxide synthase (iNOS) transcription is crucial to the pathogenesis of several inflammatory disorders. However, the molecular mechanism that control the transcription activity of IRF8 in the regulation of iNOS is not fully elucidated. This study is undertaken to determine whether SIRT1 impacts IRF8 acetylation level in the macrophages. MAIN METHODS: The silver stain, mass spectrum, bone marrow-derived monocytes differentiation, lentiviral transduction, immunoprecipitation and chromatin immunoprecipitation assay were used to investigate the relationship between IRF8 and SIRT1. KEY FINDINGS: We demonstrate that deacetylation of IRF8 is induced by lipopolysaccharide (LPS) and suppresses iNOS expression. Macrophages expressing acetylation-defective iNOS are highly septic upon transfer to macrophages cleaned up mice. Mechanistically, deacetylation IRF8 facilitates the binding of silent information regulator 1 (SIRT1) to the iNOS promoter and restricts iNOS transcription. The expression of iNOS was enhanced in the macrophages from SIRT1 conditional knockout mice and the progression of sepsis is more serious. SIGNIFICANCE: The discovery of the IRF8-SIRT1 interaction that governs iNOS expression may exploit new therapeutic strategies for inflammatory disorders.


Asunto(s)
Macrófagos , Sirtuina 1 , Ratones , Animales , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Macrófagos/metabolismo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Ratones Noqueados
15.
Front Plant Sci ; 13: 930644, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909719

RESUMEN

Panax notoginseng (Burk) F.H. Chen is a rare and valuable Chinese herb, but root rot mainly caused by Fusarium solani severely affects the yield and quality of P. notoginseng herbal materials. In this study, we isolated 30 P. notoginseng WRKY transcription factors (TFs), which were divided into three groups (I, II, and III) on the basis of a phylogenetic analysis. The expression levels of 10 WRKY genes, including PnWRKY9, in P. notoginseng roots increased in response to a methyl jasmonate (MeJA) treatment and the following F. solani infection. Additionally, PnWRKY9 was functionally characterized. The PnWRKY9 protein was localized to the nucleus. The overexpression of PnWRKY9 in tobacco (Nicotiana tabacum) considerably increased the resistance to F. solani, whereas an RNAi-mediated decrease in the PnWRKY9 expression level in P. notoginseng leaves increased the susceptibility to F. solani. The RNA sequencing and hormone content analyses of PnWRKY9-overexpression tobacco revealed that PnWRKY9 and the jasmonic acid (JA) signaling pathway synergistically enhance disease resistance. The PnWRKY9 recombinant protein was observed to bind specifically to the W-box sequence in the promoter of a JA-responsive and F. solani resistance-related defensin gene (PnDEFL1). A yeast one-hybrid assay indicated that PnWRKY9 can activate the transcription of PnDEFL1. Furthermore, a co-expression assay in tobacco using ß-glucuronidase (GUS) as a reporter further verified that PnWRKY9 positively regulates PnDEFL1 expression. Overall, in this study, we identified P. notoginseng WRKY TFs and demonstrated that PnWRKY9 positively affects plant defenses against the root rot pathogen. The data presented herein provide researchers with fundamental information regarding the regulatory mechanism mediating the coordinated activities of WRKY TFs and the JA signaling pathway in P. notoginseng responses to the root rot pathogen.

16.
J Colloid Interface Sci ; 628(Pt A): 955-965, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35964443

RESUMEN

Most metal sites and some non-metallic sites such as carbon and nitrogen are usually considered to be traditional active sites during peroxymonosulfate (PMS) activation. However, as an important non-metallic element, the actual role of silicon (Si) in PMS activation still remains unclear. In this work, taking iron silicate (FeSi) as an example, the role of the Si region in PMS activation was clearly revealed. The experiments and density functional theory (DFT) calculation results showed that besides the traditional Fe sites, the Si also played a non-negligible role during PMS activation. In FeSi containing oxygen vacancies (Ovac), Fe-Si was the active site instead of Fe-Fe. The Bard charge results implied that the presence of Ovac tuned the electronic properties of FeSi, making the Si participate in PMS activation. This work deepened understanding of the role of Si in silicates for PMS activation and provided a theoretical basis for the development of excellent Si-based catalysts.

17.
J Vet Sci ; 23(4): e57, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35920121

RESUMEN

BACKGROUND: Classical swine fever virus (CSFV), the causative agent of classical swine fever (CFS), is a highly contagious disease that poses a serious threat to Chinese pig populations. OBJECTIVES: Many provinces of China, such as Shandong, Henan, Hebei, Heilongjiang, and Liaoning provinces, have reported epidemics of CSFV, while the references to the epidemic of CSFV in Yunnan province are rare. This study examined the epidemic characteristics of the CSFV in Yunnan province. METHODS: In this study, 326 tissue samples were collected from different regions in Yunnan province from 2015 to 2021. A reverse transcription-polymerase chain reaction (RT-PCR), sequences analysis, and phylogenetic analysis were performed for the pathogenic detection and analysis of these 326 clinical specimens. RESULTS: Approximately 3.37% (11/326) of specimens tested positive for the CSFV by RT-PCR, which is lower than that of other regions of China. Sequence analysis of the partial E2 sequences of eleven CSFV strains showed that they shared 89.0-100.0% nucleotide (nt) and 95.0-100.0% amino acid (aa) homology, respectively. Phylogenetic analysis showed that these novel isolates belonged to the subgenotypes 2.1c and 2.1d, with subgenotype 2.1c being predominant. CONCLUSIONS: The CSFV was sporadic in China's Yunnan province from 2015 to 2021. Both 2.1c and 2.1d subgenotypes were found in this region, but 2.1c was dominant.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Enfermedades de los Porcinos , Animales , China/epidemiología , Peste Porcina Clásica/epidemiología , Virus de la Fiebre Porcina Clásica/genética , Genotipo , Filogenia , Porcinos
18.
Front Genet ; 13: 851505, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711921

RESUMEN

Objective: The expression, prognosis, and related mechanisms of ANXA1 are investigated in glioma, with the objective to find potential therapeutic molecular targets for glioma. Methods: We analyzed the gene expression of ANXA1 using glioma-related databases, including the Chinese Glioma Genome Atlas (CGGA) database, The Cancer Genome Atlas (TCGA) database, and the Gene Expression Omnibus (GEO) database. Moreover, we collected the sample tissues and corresponding paracancerous tissues of 23 glioma patients and then conducted a Western blot experiment to verify the expression and correlate survival of ANXA1. Moreover, we generated survival ROC curves, performing univariate and multivariate Cox analyses and the construction of the nomogram. Differential expression analysis was conducted by high and low grouping based on the median of the ANXA1 gene expression values. We conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Set Enrichment Analysis (GSEA) to explore possible mechanisms, and gene co-expression analysis was also performed. Results: The results showed that the ANXA1 expression level was higher in gliomas than in normal tissues, and a high expression level of ANXA1 in gliomas was associated with poorer prognosis. The independent prognosis analysis showed that the ANXA1 gene was an independent prognostic factor of glioma. In the analysis of KEGG and Gene Set Enrichment Analysis (GSEA), it is shown that ANXA1 may play an important role in glioma patients by affecting extracellular matrix (ECM)-receptor interaction and the focal adhesion signal pathway. The core genes, including COL1A1, COL1A2, FN1, ITGA1, and ITGB1, were screened for gene correlation and prognosis analysis. The expression level of the five genes was verified by qPCR in glioma. We concluded that these five core genes and ANXA1 could play a synergistic role in gliomas. Conclusion: The results indicated that a high expression level of ANXA1 leads to worse prognosis and ANXA1 is an independent prognostic factor and a potentially important target for the treatment of gliomas.

19.
BMC Plant Biol ; 22(1): 257, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35606728

RESUMEN

BACKGROUND: WRKY transcription factors (TFs) play vital roles in plant growth and development, secondary metabolite synthesis, and response to biotic and abiotic stresses. In a previous transcriptome sequencing analysis of Lilium regale Wilson, we identified multiple WRKY TFs that respond to exogenous methyl jasmonate treatment and lily Fusarium wilt (Fusarium oxysporum). RESULTS: In the present study, the WRKY TF LrWRKY3 was further analyzed to reveal its function in defense response to F. oxysporum. The LrWRKY3 protein was localized in the plant cell nucleus, and LrWRKY3 transgenic tobacco lines showed higher resistance to F. oxysporum compared with wild-type (WT) tobacco. In addition, some genes related to jasmonic acid (JA) biosynthesis, salicylic acid (SA) signal transduction, and disease resistance had higher transcriptional levels in the LrWRKY3 transgenic tobacco lines than in the WT. On the contrary, L. regale scales transiently expressing LrWRKY3 RNA interference fragments showed higher sensitivity to F. oxysporum infection. Moreover, a F. oxysporum-induced defensin gene, Def1, was isolated from L. regale, and the recombinant protein LrDef1 isolated and purified from Escherichia coli possessed antifungal activity to several phytopathogens, including F. oxysporum. Furthermore, co-expression of LrWRKY3 and the LrDef1 promoter in tobacco enhanced the LrDef1 promoter-driven expression activity. CONCLUSIONS: These results clearly indicate that LrWRKY3 is an important positive regulator in response to F. oxysporum infection, and one of its targets is the antimicrobial peptide gene LrDef1.


Asunto(s)
Fusarium , Lilium , Péptidos Antimicrobianos , Fusarium/fisiología , Regulación de la Expresión Génica de las Plantas , Lilium/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
20.
Phytopathology ; 112(6): 1323-1334, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34844417

RESUMEN

Root rot of Panax notoginseng, a precious Chinese medicinal plant, seriously impacts its sustainable production. However, the molecular regulatory mechanisms employed by P. notoginseng against root rot pathogens, including Fusarium solani, are still unclear. In this study, the PnMYB2 gene was isolated, and its expression was affected by independent treatments with four signaling molecules (methyl jasmonate, ethephon, salicylic acid, and hydrogen peroxide) as assessed by quantitative real-time PCR. Moreover, the PnMYB2 expression level was induced by F. solani infection. The PnMYB2 protein localized to the nucleus and may function as a transcription factor. When overexpressed in transgenic tobacco, the PnMYB2 gene conferred resistance to F. solani. Jasmonic acid (JA) metabolism and disease resistance-related genes were induced in the transgenic tobacco, and the JA content significantly increased compared with in the wild type. Additionally, transcriptome sequencing, Kyoto Encyclopedia of Genes and Genomes annotation enrichment, and metabolic pathway analyses of the differentially expressed genes in the transgenic tobacco revealed that JA metabolic, photosynthetic, and defense response-related pathways were activated. In summary, PnMYB2 is an important transcription factor in the defense responses of P. notoginseng against root rot pathogens that acts by regulating JA signaling, photosynthesis, and disease-resistance genes.


Asunto(s)
Fusarium , Panax notoginseng , Ciclopentanos , Resistencia a la Enfermedad/genética , Fusarium/metabolismo , Oxilipinas , Panax notoginseng/genética , Panax notoginseng/metabolismo , Fotosíntesis , Enfermedades de las Plantas/genética , Transducción de Señal , Nicotiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...