Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2400606, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683681

RESUMEN

Emerging organic molecules with emissions in the second near-infrared (NIR-II) region are garnering significant attention. Unfortunately, achieving accountable organic emission intensity over the NIR-IIa (1300 nm) region faces challenges due to the intrinsic energy gap law. Up to the current stage, all reported organic NIR-IIa emitters belong to polymethine-based dyes with small Stokes shifts (<50 nm) and low quantum yield (QY; ≤0.015%). However, such polymethines have proved to cause self-absorption with constrained emission brightness, limiting advanced development in deep-tissue imaging. Here a new NIR-IIa scaffold based on rigid and highly conjugated dibenzofluoran core terminated by amino-containing moieties that reveal emission peaks of 1230-1305 nm is designed. The QY is at least 10 times higher than all synthesized or reported NIR-IIa polymethines with extraordinarily large Stokes shifts of 370-446 nm. DBF-BJ is further prepared as a polymer dot to demonstrate its in vivo 3D stereo imaging of mouse vasculature with a 1400 nm long-pass filter.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38661516

RESUMEN

Hypopharyngeal cancer (HPC) is associated with the worst prognosis of all head and neck cancers and is typically identified in an advanced stage at the time of diagnosis. While oxidative stress might contribute to the onset of HPC in patients using tobacco or alcohol, the extent of this influence and the characteristics of HPC cells in advanced stage remain to be investigated. In this study, we explored whether HPC cells survived from necrotic xenograft tumors at late stage would display increased tumor resistance along with altered tolerance to oxidative stress. The remnant living HPC cells isolated from a late-stage xenograft tumor, named FaDu Ex-vivo cells showed stronger chemo- and radio-resistance, tumorigenesis, and invasiveness compared to parental FaDu cells. FaDu Ex-vivo cells also displayed increased angiogenic ability after re-transplantation to mice visualized by in vivo near infrared-II (NIR-II) fluorescence imaging modality. Moreover, FaDu Ex-vivo cells exhibited significant tumor-initiating cells (TICs) related properties accompanied by a reduction of the level of reactive oxygen species (ROS), which was associated with up-regulation of transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Interestingly, inhibition of Nrf2 by the RNA interference and the chemical inhibitor could reduce TICs related properties of FaDu Ex-vivo cells. Oxidative stress potentially initiates HPC, but elevation of Nrf2-associated antioxidant mechanisms would be essential to mitigate this effect for promoting and sustaining the stemness of HPC at the advanced stage. Current data suggest that the antioxidant potency of advanced HPC would be a therapeutic target for the design of adjuvant treatm.

3.
Opt Express ; 32(4): 5607-5620, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439282

RESUMEN

Ultrasound (US) is a valuable tool for imaging soft tissue and visualizing tumor contours. Taking the benefits of US, we presented an integrated dual-modality imaging system in this paper that achieves three-dimensional (3D) bioluminescence tomography (BLT) with multi-view bioluminescence images and 3D US imaging. The purpose of this system is to perform non-invasive, long-term monitoring of tumor growth in 3D images. US images can enhance the accuracy of the 3D BLT reconstruction and the bioluminescence dose within an object. Furthermore, an integrated co-registered scanning geometry was used to capture the fused BLT and US images. We validated the system with an in vivo experiment involving tumor-bearing mice. The results demonstrated the feasibility of reconstructing 3D BLT images in the tumor region using 3D US images. We used the dice coefficient and locational error to evaluate the similarity between the reconstructed source region and the actual source region. The dice coefficient was 88.5%, and the locational error was 0.4 mm when comparing the BLT and 3D US images. The hybrid BLT/US system could provide significant benefits for reconstructing the source of tumor location and conducting quantitative analysis of tumor size.


Asunto(s)
Imagenología Tridimensional , Tomografía , Animales , Ratones
4.
Ann Surg Oncol ; 30(13): 8419-8427, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37605084

RESUMEN

BACKGROUND: Near-infrared (NIR) fluorescence-guided surgery with indocyanine green (ICG) has been demonstrated to provide high sensitivity in sentinel lymph node biopsy (SLNB) for breast cancer but has several limitations, such as unstable pharmacokinetics, limited fluorescence brightness, and undesired diffusion to neighboring tissues. This paper investigates the use of Voluven® as the solvent for ICG fluorescence-guided SLNB (ICG-SLNB). METHODS: The photophysical properties of ICG in water and Voluven® were evaluated in laboratory experiments and in a mouse model. Nine patients with early breast cancer underwent subareolar injection of diluted ICG (0.25 mg/ml) for ICG-SLNB. Six of the nine patients received ICG dissolved in Voluven® (ICG:Voluven®), while three were administered ICG dissolved in water (ICG:water); a repetitive injection-observation protocol was followed for all patients. The mapping image quality was evaluated. RESULTS: Laboratory experiments and in vivo mouse study showed improved fluorescence and better targeting using Voluven® as the solvent. ICG-SLNB with a repetitive injection-observation protocol was successfully performed in all nine patients. ICG:Voluven® administration had an overall better signal-to-background ratio (SBR) in sequential sentinel lymph nodes. The rates of transportation within the lymphatics were also improved using ICG:Voluven® compared with ICG:water. CONCLUSIONS: From basic research to animal models to in-human trial, our study proposes a repetitive injection-observation technique with ICG:Voluven®, which is characterized by better transportation and more stable mapping quality for ICG-SLNB in breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Ganglio Linfático Centinela , Humanos , Animales , Ratones , Femenino , Verde de Indocianina , Ganglio Linfático Centinela/patología , Neoplasias de la Mama/cirugía , Fluorescencia , Biopsia del Ganglio Linfático Centinela/métodos , Solventes , Agua , Colorantes , Ganglios Linfáticos/patología
6.
J Biomed Opt ; 28(9): 094807, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37234194

RESUMEN

Significance: Optical imaging in the second near-infrared (NIR-II, 1000 to 1700 nm) region is capable of deep tumor vascular imaging due to low light scattering and low autofluorescence. Non-invasive real-time NIR-II fluorescence imaging is instrumental in monitoring tumor status. Aim: Our aim is to develop an NIR-II fluorescence rotational stereo imaging system for 360-deg three-dimensional (3D) imaging of whole-body blood vessels, tumor vessels, and 3D contour of mice. Approach: Our study combined an NIR-II camera with a 360-deg rotational stereovision technique for tumor vascular imaging and 3D surface contour for mice. Moreover, self-made NIR-II fluorescent polymer dots were applied in high-contrast NIR-II vascular imaging, along with a 3D blood vessel enhancement algorithm for acquiring high-resolution 3D blood vessel images. The system was validated with a custom-made 3D printing phantom and in vivo experiments of 4T1 tumor-bearing mice. Results: The results showed that the NIR-II 3D 360-deg tumor blood vessels and mice contour could be reconstructed with 0.15 mm spatial resolution, 0.3 mm depth resolution, and 5 mm imaging depth in an ex vivo experiment. Conclusions: The pioneering development of an NIR-II 3D 360-deg rotational stereo imaging system was first applied in small animal tumor blood vessel imaging and 3D surface contour imaging, demonstrating its capability of reconstructing tumor blood vessels and mice contour. Therefore, the 3D imaging system can be instrumental in monitoring tumor therapy effects.


Asunto(s)
Neoplasias , Animales , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/irrigación sanguínea , Imagen Óptica/métodos , Colorantes , Imagenología Tridimensional/métodos , Vasos Sanguíneos
7.
Biomater Sci ; 11(12): 4308-4326, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37066612

RESUMEN

Creating infection resistant polymer brushes possessing antiadhesive, bactericidal and cell-compatible features can be regarded as a promising approach to prevent biomaterial-associated infections. In this work, polysulfobetaine type zwitterionic homo- and copolymer brushes with varying spacer lengths (charge separation distance between zwitterions, n = 3, 6 or 12) were allowed to grow onto a tartaric acid based aliphatic polyester substrate using surface initiated atom transfer radical polymerization. All of the brush modified surfaces were thoroughly characterized and assessed for their anti-infective performances in vitro. Strikingly, a suitable copolymer composition, i.e., polyZ6-co-Z12 (50/50 copolymer of polysulfobetaine methacrylates with 6 and 12 spacer lengths), was observed to inhibit bacterial growth completely and its activity was sustained for a long time (>3 months). Surprisingly, its antibacterial effect was found to be bactericidal, as is evident from live-dead staining of residual dead bacterial cells that can be easily released by exposing the surface to salt solution, thereby regenerating the surface. However, all of the other copolymer as well as homopolymer brushes exhibited bacteriostatic behavior. An attempt was made to understand the peculiar behavior of this particular brush composition. Nevertheless, the biocidal and also protein repellent brush did not display any cytotoxicity towards human cells, making it an ideal substrate to be used as an infection resistant biomedical implant. Animal studies further confirmed that this particular copolymeric brush modified scaffold can be a promising anti-infective wound dressing material with rapid wound healing effects as compared to the unmodified scaffold.


Asunto(s)
Betaína , Metacrilatos , Animales , Humanos , Metacrilatos/química , Antibacterianos/farmacología , Antibacterianos/química , Polímeros/química , Cicatrización de Heridas , Propiedades de Superficie
8.
J Am Chem Soc ; 145(1): 516-526, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36562565

RESUMEN

Organic molecules having emission in the NIR(II) region are emergent and receiving enormous attention. Unfortunately, attaining accountable organic emission intensity around the NIR(II) region is hampered by the dominant internal conversion operated by the energy gap law, where the emission energy gap and the associated internal reorganization energy λint play key roles. Up to the current stage, the majority of the reported organic NIR(II) emitters belong to those polymethines terminated by two symmetric chromophores. Such a design has proved to have a small λint that greatly suppresses the internal conversion. However, the imposition of symmetric chromophores is stringent, limiting further development of organic NIR(II) dyes in diversity and versatility. Here, we propose a new concept where as far as the emissive state of the any asymmetric polymethines contains more or less equally transition density between two terminated chromophores, λint can be as small as that of the symmetric polymethines. To prove the concept, we synthesize a series of new polymethines terminated by xanthen-9-yl-benzoic acid and 2,4-diphenylthiopyrylium derivatives, yielding AJBF1112 and AEBF1119 that reveal emission peak wavelength at 1112 and 1119 nm, respectively. The quantum yield is higher than all synthesized symmetric polymethines of 2,4-diphenylthiopyrylium derivatives (SC1162, 1182, 1185, and 1230) in this study. λint were calculated to be as small as 6.2 and 7.3 kcal/mol for AJBF1112 and AEBF1119, respectively, proving the concept. AEBF1119 was further prepared as a polymer dot to demonstrate its in vitro specific cellular imaging and in vivo tumor/bone targeting in the NIR(II) region.


Asunto(s)
Colorantes Fluorescentes , Indoles
9.
Chem Sci ; 13(34): 10074-10081, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36128252

RESUMEN

Intraoperative fluorescence imaging in the second near-infrared (NIR-II) region heralds a new era in image-guided surgery since the success in the first-in-human liver-tumor surgery guided by NIR-II fluorescence. Limited by the conventional small organic NIR dyes such as FDA-approved indocyanine green with suboptimal NIR-II fluorescence and non-targeting ability, the resulting shallow penetration depth and high false positive diagnostic values have been challenging. Described here is the design of NIR-II emissive semiconducting polymer dots (Pdots) incorporated with thermally activated delayed fluorescence (TADF) moieties to exhibit emission maxima of 1064-1100 nm and fluorescence quantum yields of 0.40-1.58% in aqueous solutions. To further understand how the TADF units affect the molecular packing and the resulting optical properties of Pdots, in-depth and thorough density-functional theory calculations were carried out to better understand the underlying mechanisms. We then applied these Pdots for in vivo 3D bone imaging in mice. This work provides a direction for future designs of NIR-II Pdots and holds promising applications for bone-related diseases.

10.
Biosensors (Basel) ; 12(2)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35200345

RESUMEN

Near-infrared-II (NIR-II, 1000-1700 nm) fluorescence imaging boasts high spatial resolution and deep tissue penetration due to low light scattering, reduced photon absorption, and low tissue autofluorescence. NIR-II biological imaging is applied mainly in the noninvasive visualization of blood vessels and tumors in deep tissue. In the study, a stereo NIR-II fluorescence imaging system was developed for acquiring three-dimension (3D) images on tumor vasculature in real-time, on top of the development of fluorescent semiconducting polymer dots (IR-TPE Pdots) with ultra-bright NIR-II fluorescence (1000-1400 nm) and high stability to perform long-term fluorescence imaging. The NIR-II imaging system only consists of one InGaAs camera and a moving stage to simulate left-eye view and right-eye view for the construction of 3D in-depth blood vessel images. The system was validated with blood vessel phantom of tumor-bearing mice and was applied successfully in obtaining 3D blood vessel images with 0.6 mm- and 5 mm-depth resolution and 0.15 mm spatial resolution. The NIR-II stereo vision provides precise 3D information on the tumor microenvironment and blood vessel path.


Asunto(s)
Colorantes Fluorescentes , Neoplasias , Animales , Colorantes Fluorescentes/química , Ratones , Neoplasias/diagnóstico por imagen , Imagen Óptica/métodos , Fotones , Polímeros/química
11.
Adv Healthc Mater ; 10(24): e2100993, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34549550

RESUMEN

Fluorescence probes emitting in the second near-infrared (NIR-II, 1000-1700 nm) window with the ability for deep-tissue imaging in mammals herald a new era in surgical methodology. However, the brightness of these NIR-II probes is still far from satisfactory due to their low fluorescence quantum yields (QYs), preventing the observation of high-resolution images such as whole-organ vascular networks in real time. Described here is the molecular engineering of a series of semiconducting polymer dots (Pdots) incorporated with aggregation-induced emission moieties to exhibit the QYs as high as 14% in the NIR-II window. Benefiting from the ultrahigh brightness, a 1400 nm long-pass filter is utilized to realize in vivo 3D tumor mapping in mice. To further understand how the geometrical and electron structures of the semiconducting polymers affect their optical properties, the in-depth and thorough density-functional theory calculations are performed to interpret the experimental results. This study lays the groundwork for further molecular design of highly bright NIR-II Pdots.


Asunto(s)
Neoplasias , Puntos Cuánticos , Animales , Fluorescencia , Colorantes Fluorescentes , Ratones , Neoplasias/diagnóstico por imagen , Imagen Óptica , Polímeros , Semiconductores
12.
J Biomed Opt ; 25(3): 1-11, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32129028

RESUMEN

We demonstrate dual modality of free-space fluorescence diffuse optical tomography (FDOT) and handheld ultrasound (US) imaging to reveal both functional and structural information in small animals. FDOT is a noninvasive method for examining the fluorophore inside an object from the light distribution of the surface. In FDOT, a 660-nm continuous wave diode laser was used as an excitation source and an electron-multiplying charge-coupled device (EMCCD) was used for fluorescence data acquisition. Both the laser and EMCCD were mounted on a 360-deg rotation gantry for the transmission optical data collection. The structural information is obtained from a 6- to 17-MHz handheld US linear transducer by single-side access and conducts in the reconstruction as soft priors. The rotation ranges from 0 deg to 360 deg; different rotation degrees, object positions, and parameters were determined for comparison. Both phantom and tissue phantom results demonstrate that fluorophore distribution can be recovered accurately and quantitatively using this imaging system. Finally, an animal study confirms that the system can extract a dual-modality image, validating its feasibility for further in vivo experiments. In all experiments, the error and standard deviation decrease as the rotation degree is increased and the error was reduced to 10% when the rotation degree was increased over 135 deg.


Asunto(s)
Fluorescencia , Microscopía Fluorescente , Tomografía Óptica/métodos , Ultrasonografía , Algoritmos , Animales , Simulación por Computador , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Fluorescente/métodos , Fantasmas de Imagen , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...