Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 693, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039437

RESUMEN

Climate change is one of the biggest challenges to the world at present. Tomato is also suffered from devastating yield loss due to climate change. The domesticated tomato (Solanum lycopersicum) is presumed to be originated from the wild tomato (S. pimpinellifolium). In this study, we compared the climate data of S. pimpinellifollium with the domesticated tomato, predicted the suitable regions of S. pimpinellifollium in China using MaxEnt model and assessed their tolerance to drought stress. We found that the predicted suitable regions of wild tomato are highly consistent with the current cultivated regions of domesticated tomato, suggesting that the habitat demand of domesticated tomato descended largely from its ancestor, hence the habitat information of wild tomato could provide a reference for tomato cultivation. We further predicted suitable regions of wild tomato in the future in China. Finally, we found that while average drought tolerance between wild and domesticated tomato accessions shows no difference, tolerance levels among wild tomato accessions exhibit higher variation, which could be used for future breeding to improve drought resistance. To summarize, our study shows that suitable regions of wild tomato provide insights into domesticated tomato cultivation in China.


Asunto(s)
Domesticación , Sequías , Solanum lycopersicum , Solanum lycopersicum/fisiología , Solanum lycopersicum/crecimiento & desarrollo , China , Cambio Climático , Ecosistema , Productos Agrícolas/crecimiento & desarrollo
2.
Plant Cell Environ ; 47(8): 3227-3240, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38738504

RESUMEN

Plants synthesise a vast array of volatile organic compounds (VOCs), which serve as chemical defence and communication agents in their interactions with insect herbivores. Although nitrogen (N) is a critical resource in the production of plant metabolites, its regulatory effects on defensive VOCs remain largely unknown. Here, we investigated the effect of N content in tomato (Solanum lycopersicum) on the tobacco cutworm (Spodoptera litura), a notorious agricultural pest, using biochemical and molecular experiments in combination with insect behavioural and performance analyses. We observed that on tomato leaves with different N contents, S. litura showed distinct feeding preference and growth and developmental performance. Particularly, metabolomics profiling revealed that limited N availability conferred resistance upon tomato plants to S. litura is likely associated with the biosynthesis and emission of the volatile metabolite α-humulene as a repellent. Moreover, exogenous application of α-humulene on tomato leaves elicited a significant repellent response against herbivores. Thus, our findings unravel the key factors involved in N-mediated plant defence against insect herbivores and pave the way for innovation of N management to improve the plant defence responses to facilitate pest control strategies within agroecosystems.


Asunto(s)
Herbivoria , Nitrógeno , Hojas de la Planta , Solanum lycopersicum , Spodoptera , Compuestos Orgánicos Volátiles , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Solanum lycopersicum/parasitología , Animales , Nitrógeno/metabolismo , Spodoptera/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Defensa de la Planta contra la Herbivoria , Volatilización , Larva/fisiología
3.
J Colloid Interface Sci ; 664: 626-639, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490038

RESUMEN

Dealuminated Beta zeolite has a large amount of silanol defects on its interface, which provides an ideal place for embedding metal species and creating metal active sites in a confined microenvironment. The confined metal sites as well as their surroundings are closely related to the reactant activation and transient state achievement. Hence, unraveling the confined metal sites is of great significance for the catalytic reaction process. Herein, niobium species were incorporated into the silanol defects over dealuminated Beta zeolite with a facile dry impregnation method, co-grinding the niobium precursor with dealuminated Beta zeolite support. The successful incorporation of niobium into the silanol defects for 30Nb-Beta zeolite was verified by DRIFT, 1H MAS NMR, UV-Vis and UV-Raman characterizations. XAS characterization and DFT calculations further disclosed that the confined Nb species existed as (SiO)2Nb(OH)(=O), containing two Si-O-Nb bonds, one Nb=O bond as well as one Nb-OH bond. The synthesized 30Nb-Beta zeolite catalyst displayed a superior cyclohexene conversion of 51.1%, cyclohexene oxide selectivity of 83.1% as well as TOF value of 188.2 h-1 ascribed to the inherent electrophilicity of Nb(V) for confined (SiO)2Nb(OH)(=O) species as well as the low oxygen transfer energy barrier for NbV-OOH species. Furthermore, the prepared 30Nb-Beta zeolite can be effectively employed to other cyclic alkene epoxidation reactions.

4.
Nat Commun ; 14(1): 4763, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553331

RESUMEN

The three-dimensional shape of a flower is integrated by morphogenesis along different axes. Differentiation along the petal proximodistal axis is tightly linked to the specification of pollinators; however, it is still unclear how a petal patterns this axis. The corolla of Torenia fournieri exhibits strong differentiation along the proximodistal axis, and we previously found a proximal regulator, TfALOG3, controlling corolla neck differentiation. Here, we report another gene, TfBOP2, which is predominantly expressed in the proximal region of the corolla. TfBOP2 mutants have shorter proximal corolla tubes and longer distal lobe, demonstrating its function as a proximal regulator. Arabidopsis BOPs mutant shows similar defects, favouring a shared role of BOPs homologues. Genetic analysis demonstrates the interaction between TfBOP2 and TfALOG3, and we further found that TfALOG3 physically interacts with TfBOP2 and can recruit TfBOP2 to the nuclear region. Our study favours a hypothetical shared BOP-ALOG complex that is recruited to regulate corolla differentiation in the proximal region axis of T. fournieri.


Asunto(s)
Núcleo Celular , Flores , Flores/genética
5.
Polymers (Basel) ; 15(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37376378

RESUMEN

Castor is an important non-edible oilseed crop used in the production of high-quality bio-oil. In this process, the leftover tissues rich in cellulose, hemicellulose and lignin are regarded as by-products and remain underutilized. Lignin is a crucial recalcitrance component, and its composition and structure strongly limit the high-value utilization of raw materials, but there is a lack of detailed studies relating to castor lignin chemistry. In this study, lignins were isolated from various parts of the castor plant, namely, stalk, root, leaf, petiole, seed endocarp and epicarp, using the dilute HCl/dioxane method, and the structural features of the as-obtained six lignins were investigated. The analyses indicated that endocarp lignin contained catechyl (C), guaiacyl (G) and syringyl (S) units, with a predominance of C unit [C/(G+S) = 6.9:1], in which the coexisted C-lignin and G/S-lignin could be disassembled completely. The isolated dioxane lignin (DL) from endocarp had a high abundance of benzodioxane linkages (85%) and a low level of ß-ß linkages (15%). The other lignins were enriched in G and S units with moderate amounts of ß-O-4 and ß-ß linkages, being significantly different from endocarp lignin. Moreover, only p-coumarate (pCA) incorporated into the epicarp lignin was observed, with higher relative content, being rarely reported in previous studies. The catalytic depolymerization of isolated DL generated 1.4-35.6 wt% of aromatic monomers, among which DL from endocarp and epicarp have high yields and excellent selectivity. This work highlights the differences in lignins from various parts of the castor plant, providing a solid theory for the high-value utilization of the whole castor plant.

6.
Int J Biol Macromol ; 239: 124256, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36996963

RESUMEN

The search for feedstock of catechyl lignin (C-lignin) is great interest and importance, as C-lignin featuring homogeneity and linearity is considered as an "ideal lignin" archetype for valorization and exits in only a few plant seed coats. In this study, naturally occurring C-lignin is first discovered in the seed coats of Chinese tallow, which has the highest content of C-lignin (15.4 wt%) as compared with other known feedstocks. An optimized extraction procedure by ternary deep eutectic solvents (DESs) enables the complete disassembly of C-lignin and G/S-lignin coexisted in Chinese tallow seed coats, and characterizations revealed that the as-separated C-lignin sample is abundant in benzodioxane units with no observation of ß-O-4 structures from G/S-lignin. Catalytic depolymerization of C-lignin results in a simplex catechol product in 129 mg per gram seed coats, being higher than other reported feedstocks. Derivatizing the "black" C-lignin via the nucleophilic isocyanation of benzodioxane γ-OH leads to a "whitened C-lignin" with uniform laminar structure and excellent crystallization ability, being conducive to fabricating functional materials. Overall, this contribution showed that Chinses tallow seed coats are suitable feedstock for acquiring C-lignin biopolymer.


Asunto(s)
Euphorbiaceae , Lignina , Semillas , Biomasa , Catálisis , Lignina/química , Semillas/química , Solventes/química , Euphorbiaceae/química
7.
Bioorg Chem ; 131: 106139, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36610251

RESUMEN

O-GlcNAcylation is a ubiquitous post-translational modification governing vital biological processes in cancer, diabetes and neurodegeneration. Metabolic chemical reporters (MCRs) containing bio-orthogonal groups such as azido or alkyne, are widely used for labeling of interested proteins. However, most MCRs developed for O-GlcNAc modification are not specific and always lead to unexpected side reactions termed S-glyco-modification. Here, we attempt to develop a new MCR of Ac34FGlcNAz that replacing the 4-OH of Ac4GlcNAz with fluorine, which is supposed to abolish the epimerization of GALE and enhance the selectivity. The discoveries demonstrate that Ac34FGlcNAz is a powerful MCR for O-GlcNAcylation with high efficiency and the process of this labeling is conducted by the two enzymes of OGT and OGA. Most importantly, Ac34FGlcNAz is predominantly incorporated intracellular proteins in the form of O-linkage and leads to negligible S-glyco-modification, indicating it is a selective MCR for O-GlcNAcylation. Therefore, we reason that Ac34FGlcNAz developed here is a well characterized MCR of O-GlcNAcylation, which provides more choice for label and enrichment of O-GlcNAc associated proteins.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas , Acetilglucosamina/química , Proteínas/química , Acilación
8.
Plant Reprod ; 36(2): 139-146, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36543964

RESUMEN

The expression pattern of an interested gene at a cellular level provides strong evidence for its functions. RNA in situ hybridization has been proved to be a powerful tool in detecting the spatial-temporal expression pattern of a gene in various organisms. However, classical RNA in situ hybridization (ISH) technique is time-consuming and requires sophisticated sectioning skills. Therefore, we developed a method for whole-mount in situ hybridization (WISH) on ovules of Torenia fournieri, which is a model species in the study of plant reproduction. T. fournieri possesses ovules with protruding embryo sacs, making it easy to be observed and imaged through simple manipulation. To determine the effect of classical ISH and our newly established WISH, we detected the expression of a D-class gene, TfSTK3, using both methods. The expression patterns of TfSTK3 are similar in classical ISH and WISH, confirming reliability of the WISH method. Compared with WISH, classical ISH always leads to distorted embryo sacs, hence difficult to distinguish signals within the female gametophyte. To understand whether our WISH protocol also works well in detecting genes expressed within embryo sacs, we further examined the expression of a synergid-enriched candidate, TfPMEI1, and clearly observed specific signals within two synergid cells. To summarize, our WISH technique allows to visualize gene expression patterns in ovules of T. fournieri within one week and will benefit the field of plant reproduction in the future.


Asunto(s)
Óvulo Vegetal , ARN , ARN/metabolismo , Óvulo Vegetal/metabolismo , Reproducibilidad de los Resultados , Hibridación in Situ
9.
J Phys Chem Lett ; 13(46): 10722-10727, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36367959

RESUMEN

Electronic devices based on two-dimensional materials are promising for application in space instrumentation because of their small size and low power consumption, and irradiation tolerance of these devices is required because of the existence of energetic particles in aerospace conditions. We investigate the performance degradation of graphene field effect transistors (GFETs) with 3 MeV protons by using an in situ irradiation facility. Our results indicate that GFET performance degraded severely at the ion fluence of 8 × 1011 cm-2. Surprisingly, although the performance of the proton-irradiated GFETs is difficult to recover in vacuum, it can nearly completely recover within hours when the GFET is moved into an air environment, indicating that the performance change is due to the charge accumulation in SiO2 under proton irradiation rather than the lattice damage of graphene. Our results have great importance for the application of 2D devices in aerospace and other radiative environments.

10.
Front Chem ; 10: 1029911, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36385987

RESUMEN

Structures containing galactose and GalNAc residues are specifically recognized by asialoglycoprotein receptors, allowing them to selectively internalize by hepatocytes for drug-targeting delivery. However, methods for direct synthesis of GalNAc glycosides are still challenging due to the poor participating group of 2-acetamido. Here, we develop a facile strategy to synthesize various GalNAc glycosides by employing a series of rare earth metal triflates, and the results demonstrate that both α-glycosides and ß-glycosides of GalNAc can be obtained by conducting with Hf(OTf)4 and Sc(OTf)3, respectively. These applicable results indicate that any interested GalNAc-containing substrates could be prepared by this simple strategy.

11.
ACS Omega ; 7(41): 36379-36386, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36278062

RESUMEN

Devices based on two-dimensional (2D) materials such as graphene and molybdenum disulfide have shown extraordinary potential in physics, nanotechnology, and electronics. The performances of these applications are heavily affected by defects in utilized materials. Although great efforts have been spent in studying the formation and property of various defects in 2D materials, the long-term evolution of vacancies is still unclear. Here, using a designed program based on the kinetic Monte Carlo method, we systematically investigate the vacancy evolution in monolayer graphene on a long-time and large spatial scale, focusing on the variation of the distribution of different vacancy types. In most cases, the vacancy distribution remains nearly unchanged during the whole evolution, and most of the evolution events are vacancy migrations with a few being coalescences, while it is extremely difficult for multiple vacancies to dissolve. The probabilities of different categories of vacancy evolutions are determined by their reaction rates, which, in turn, depend on corresponding energy barriers. We further study the influences of different factors such as the energy barrier for vacancy migration, coalescence, and dissociation on the evolution, and the coalescence energy barrier is found to be dominant. These findings indicate that vacancies (also subnanopores) in graphene are thermodynamically stable for a long period of time, conducive to subsequent characterizations or applications. Besides, this work provides hints to tune the ultimate vacancy distribution by changing related factors and suggests ways to study the evolution of other defects in various 2D materials.

12.
Eur J Med Chem ; 243: 114680, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36152386

RESUMEN

Platinum-based antitumor drugs have been used in many types of tumors due to its broad antitumor spectrum in clinic. Encouraged by the cisplatin's (CDDP) worldwide success in cancer chemotherapy, the research in platinum-based antitumor drugs has evolved from traditional platinum drug to multi-ligand and multifunctional platinum prodrugs over half a century. With the rapid development of metal drugs and the anticancer immune response, challenges and opportunities in platinum drug research have been shifted from traditional platinum-based drugs to platinum-based hybrids and the direction of development is tending toward photodynamic therapy, nano-delivery therapy, drug combination, targeted therapy, diagnostic therapy, immune-combination therapy and tumor stem cell therapy. In this review, we first exhaustively overviewed the role of platinum-based antitumor prodrugs and the anticancer immune response in medicinal inorganic chemistry based on the special nanomaterials, the modification of specific ligands, and the multiple functions obtained that are beneficial for tumor therapy in the last five years. We also categorized them according to drug potency and function. There hasn't been a comprehensive evaluation of precursor platinum drugs in prior articles. And a multifarious approach to distinguish and detail the variety of alterations of platinum-based precursors in various valence states also hasn't been summarized. In addition, this review points out the main problems at the interface of chemistry, biology, and medicine from their action mechanisms for current platinum drug development, and provides up-to-date potential strategies from drug design perspectives to circumvent those drawbacks. And a promising idea is also enlightened for researchers in the development and discovery of platinum prodrugs.


Asunto(s)
Antineoplásicos , Neoplasias , Profármacos , Humanos , Platino (Metal)/uso terapéutico , Profármacos/farmacología , Profármacos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Química Inorgánica , Ligandos , Inmunidad
13.
Nat Commun ; 13(1): 4894, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35985996

RESUMEN

Ion-selective nanoporous two-dimensional (2D) materials have shown extraordinary potential in energy conversion, ion separation, and nanofluidic devices; however, different applications require diverse nanochannel devices with different ion selectivity, which is limited by sample preparation and experimental techniques. Herein, we develop a heterogeneous graphene-based polyethylene terephthalate nanochannel (GPETNC) with controllable ion sieving to overcome those difficulties. Simply by adjusting the applied voltage, ion selectivity among K+, Na+, Li+, Ca2+, and Mg2+ of the GPETNC can be immediately tuned. At negative voltages, the GPETNC serves as a mono/divalent ion selective device by impeding most divalent cations to transport through; at positive voltages, it mimics a biological K+ nanochannel, which conducts K+ much more rapidly than the other ions with K+/ions selectivity up to about 4.6. Besides, the GPETNC also exhibits the promise as a cation-responsive nanofluidic diode with the ability to rectify ion currents. Theoretical calculations indicate that the voltage-dependent ion enrichment/depletion inside the GPETNC affects the effective surface charge density of the utilized graphene subnanopores and thus leads to the electrically controllable ion sieving. This work provides ways to develop heterogeneous nanochannels with tunable ion selectivity toward broad applications.

14.
ChemSusChem ; 15(12): e202200365, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35438245

RESUMEN

Lignin-first depolymerization of lignocellulosic biomass into aromatics is of great significance to sustainable biorefinery. However, it remains a challenge, owing to the variance between lignin sources and structures. In this study, ruthenium supported on carbon nanotubes (Ru/CNT) exhibits efficient catalytic activity toward lignin hydrogenolysis to exclusively afford monophenols in high yields. Catalytic tests indicate that the yields of aromatic monomers are related to lignin sources and decrease in the order: hardwoods > herbaceous plants > softwoods. Experimental results demonstrate that the scission of C-O bonds and the high selectivity to monomeric aromatic compounds over the Ru/CNT catalyst are enhanced by avoiding side condensation. Furthermore, the fabricated Ru/CNT shows good reusability and recyclability, applicability, and biomass feedstock compatibility, rendering it a promising candidate for lignin valorization. These findings pave the way for rational design of highly active and stable catalysts to potentially address challenges in lignin chemistry.


Asunto(s)
Nanotubos de Carbono , Rutenio , Biomasa , Catálisis , Lignina/química
15.
Mater Horiz ; 8(5): 1390-1408, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34846448

RESUMEN

Two-dimensional (2D) materials such as graphene and molybdenum disulfide have been demonstrated with a wide range of applications in electronic devices, chemical catalysis, single-molecule detection, and energy conversion. In the 2D materials, nanopores can be created, and the 2D nanoporous membranes possess many unique properties such as ultrathin thickness, high surface area, and excellent particle sieving capability, showing extraordinary promise in plenty of applications, such as sea water desalination, gas separation, and DNA sequencing. The performances of these membranes are mainly determined by the nanopore size, structure, and density, which, in turn, rely on the fabrication techniques of the nanopores. This review covers the important progress of nanopore fabrication in 2D materials and comprehensively compares these methods for the features of the introduced nanopores and their formation processes. Future perspectives are discussed on the opportunities and challenges in fabricating high-grade 2D nanopores.


Asunto(s)
Grafito , Nanoporos , Membranas Artificiales , Nanotecnología , Análisis de Secuencia de ADN
16.
Eur J Med Chem ; 221: 113469, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33965862

RESUMEN

Disseminated tumors lead to approximately 90% of cancer-associated deaths especially for hepatocellular carcinoma (HCC), indicating the imperative need of antimetastatic drugs and the ineffectiveness of current therapies. Recently polyamine derivatives have been identified as a promising prospect in dealing with metastatic tumors. Herein, a novel class of naphthalimide-polyamine conjugates 8a-8d, 13a-13c, 17 and 21 were synthesized and the mechanism was further determined. The polyamine conjugate 13b displayed remarkably elevated anti-tumor and anti-metastatic effects (76.01% and 75.02%) than the positive control amonafide (46.91% and 55.77%) at 5 mg/kg in vivo. The underlying molecular mechanism indicated that in addition to induce DNA damage by up-regulating p53 and γH2AX, 13b also targeted lysosome to modulate polyamine metabolism and function in a totally different way from that of amonafide. Furthermore, the HMGB1/p62/LC3II/LC3I and p53/SSAT/ß-catenin pathways were mainly involved in the inhibition of 13b-induced HCC metastasis by targeting polyamine transporters (PTs) overexpressed in HCC. At last, 13b down-regulated the concentrations of Put, Spd and Spm by modulating polyamine metabolism key enzymes SSAT and PAO, which favored the suppression of fast growing tumor cells. Taken together, our study implies a promising strategy for naphthalimide conjugates to treat terminal cancer of HCC by targeting autophagy and tumor microenvironment with reduced toxicities and notable activities.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Naftalimidas/farmacología , Poliaminas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/secundario , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Lisosomas/efectos de los fármacos , Estructura Molecular , Naftalimidas/química , Poliaminas/química , Relación Estructura-Actividad
17.
ACS Appl Mater Interfaces ; 13(10): 12366-12374, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33683091

RESUMEN

Two-dimensional (2D) nanoporous membranes have attracted great interest in water desalination, energy conversion, electrode, and gas separation. The performances of these membranes are mainly determined by the nanopores, and only with satisfactory subnanometer pores can applications such as high-precision ion separation be realized. Therefore, to efficiently create subnanopores in 2D materials is of great importance. Here, using molecular dynamics simulations, we demonstrate that the direct irradiation of energetic ion is capable of introducing subnanopores in monolayer graphene. By changing the energy of the incident Au ion, the averaged pore diameter can be adjusted from 4.2 to 5.6 Å, and pore diameter distributions are narrow. In the formation processes of the subnanopores, the cascade collisions caused by the primary knock-on atom (PKA) predominates, and pores can only be created in ion impact positions close to the PKA, especially for the incident ion with high energy. Our results show the promise of ion irradiation as a facile method to fabricate subnanopores in 2D materials. As hydrated ions, gases, and small organic molecules have diameters of several angstroms, close to the pore sizes, the created nanoporous membranes can be used to separate those matter, which is conducive to accelerating related applications.

18.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517095

RESUMEN

In contrast to typical radially symmetrical flowers, zygomorphic flowers, such as those produced by pea (Pisum sativum L.), have bilateral symmetry, manifesting dorsoventral (DV) and organ internal (IN) asymmetry. However, the molecular mechanism controlling IN asymmetry remains largely unclear. Here, we used a comparative mapping approach to clone SYMMETRIC PETALS 1 (SYP1), which encodes a key regulator of floral organ internal asymmetry. Phylogenetic analysis showed that SYP1 is an ortholog of Arabidopsis thaliana LIGHT-DEPENDENT SHORT HYPOCOTYL 3 (LSH3), an ALOG (Arabidopsis LSH1 and Oryza G1) family transcription factor. Genetic analysis and physical interaction assays showed that COCHLEATA (COCH, Arabidopsis BLADE-ON-PETIOLE ortholog), a known regulator of compound leaf and nodule identity in pea, is involved in organ internal asymmetry and interacts with SYP1. COCH and SYP1 had similar expression patterns and COCH and SYP1 target to the nucleus. Furthermore, our results suggested that COCH represses the 26S proteasome-mediated degradation of SYP1 and regulates its abundance. Our study suggested that the COCH-SYP1 module plays a pivotal role in floral organ internal asymmetry development in legumes.


Asunto(s)
Flores/genética , Morfogénesis/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Dominios y Motivos de Interacción de Proteínas , Carácter Cuantitativo Heredable , Secuencia de Aminoácidos , Clonación Molecular , Genes de Plantas , Estudios de Asociación Genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
19.
ACS Appl Mater Interfaces ; 12(21): 24281-24288, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349478

RESUMEN

Graphene membranes with subnanopores are considered to be the next-generation materials for water desalination and ion separation, while their performance is mainly determined by the relative ion selectivity of the pores. However, the origin of this phenomenon has been controversial in the past few years, which strongly limits the development of related applications. Here, using direct Au ion bombardment, we fabricated the desired subnanopores with average diameters of 0.8 ± 0.16 nm in monolayer graphene. The pores showed the ability to sieve K+, Na+, Li+, Cs+, Mg2+, and Ca2+ cations, and the observed K+/Mg2+ selectivity ratio was over 4. With further molecular dynamics simulations, we demonstrated that the ion selectivity is primarily attributed to the dehydration process of ions that can be quantitatively described by the ion-dependent free-energy barriers. Hopefully, this work is helpful in further enhancing the ion selectivity of graphene nanopores and also presenting a new paradigm for improving the performance of other nanoporous atomically thin membranes, such as MXenes and MoS2.

20.
Nanoscale ; 12(16): 8975-8981, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32270161

RESUMEN

Nanopore devices are applied in many fields such as molecular sensing and DNA sequencing, and the detection precision is primarily determined by 1/f noise. The mechanism of 1/f noise in nanopores is still not clearly understood, especially the nonequilibrium 1/f noise in rectifying nanopores. Hereby, we propose that 1/f noise in solid-state nanopores originates from the electrolyte ion trapping-detrapping process occurring on the inner surface of the nanopores, which can nonlinearly affect the ion number inside the rectifying nanopores due to the specific ion enrichment/depletion effect. Our model can not only quantitatively explain the nonlinear dependence of 1/f noise on the applied voltage, i.e., the nonequilibrium 1/f noise, for current rectifying nanopores, but also provide a unified explanation on the influence of the electrolyte concentration, pH value, and geometry of the nanopores. From our model, we observe a new flattening phenomenon of 1/f noise in conical nanopores, and this is further confirmed by our experimental results. Our research can be helpful in understanding and reducing 1/f noise in other nanopore devices, especially where the enrichment or depletion of ions exists.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA