Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(24): 15915-15924, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833535

RESUMEN

Considering the increasing demand for high-resolution light-emitting diodes (LEDs), it is important that direct fine patterning technologies for LEDs be developed, especially for quantum-dot LEDs (QLEDs). Traditionally, the patterning of QLEDs relies on resin-based photolithography techniques, requiring multiple steps and causing performance deterioration. Nondestructive direct patterning may provide an easy and stepwise method to achieve fine-pixelated units in QLEDs. In this study, two isomeric tridentate cross-linkers (X8/X9) are presented and can be blended into the hole transport layer (HTL) and the emissive layer (EML) of QLEDs. Because of their photosensitivity, the in situ cross-linking process can be efficiently triggered by ultraviolet irradiation, affording high solvent resistance and nondestructive direct patterning of the layers. Red QLEDs using the cross-linked HTL demonstrate an impressive external quantum efficiency of up to 22.45%. Through lithographic patterning enabled by X9, line patterns of HTL and EML films exhibit widths as narrow as 2 and 4 µm, respectively. Leveraging the patterned HTL and EML, we show the successful fabrication of pixelated QLED devices with an area size of 3 × 3 mm2, alongside the successful production of dual-color pixelated QLED devices. These findings showcase the promising potential of direct patterning facilitated by engineered cross-linkers for the cost-effective fabrication of pixelated QLED displays.

2.
Proc Natl Acad Sci U S A ; 121(6): e2309096120, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285934

RESUMEN

Invisibility, a fascinating ability of hiding objects within environments, has attracted broad interest for a long time. However, current invisibility technologies are still restricted to stationary environments and narrow band. Here, we experimentally demonstrate a Chimera metasurface for multiterrain invisibility by synthesizing the natural camouflage traits of various poikilotherms. The metasurface achieves chameleon-like broadband in situ tunable microwave reflection mimicry of realistic water surface, shoal, beach/desert, grassland, and frozen ground from 8 to 12 GHz freely via the circuit-topology-transited mode evolution, while remaining optically transparent as an invisible glass frog. Additionally, the mechanic-driven Chimera metasurface without active electrothermal effect, owning a bearded dragon-like thermal acclimation, can decrease the maximum thermal imaging difference to 3.1 °C in tested realistic terrains, which cannot be recognized by human eyes. Our work transitions camouflage technologies from the constrained scenario to ever-changing terrains and constitutes a big advance toward the new-generation reconfigurable electromagnetics with circuit-topology dynamics.

3.
Adv Sci (Weinh) ; 11(10): e2307746, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145346

RESUMEN

Electrical stimulation (ES) is proposed as a therapeutic solution for managing chronic wounds. However, its widespread clinical adoption is limited by the requirement of additional extracorporeal devices to power ES-based wound dressings. In this study, a novel sandwich-structured photovoltaic microcurrent hydrogel dressing (PMH dressing) is designed for treating diabetic wounds. This innovative dressing comprises flexible organic photovoltaic (OPV) cells, a flexible micro-electro-mechanical systems (MEMS) electrode, and a multifunctional hydrogel serving as an electrode-tissue interface. The PMH dressing is engineered to administer ES, mimicking the physiological injury current occurring naturally in wounds when exposed to light; thus, facilitating wound healing. In vitro experiments are performed to validate the PMH dressing's exceptional biocompatibility and robust antibacterial properties. In vivo experiments and proteomic analysis reveal that the proposed PMH dressing significantly accelerates the healing of infected diabetic wounds by enhancing extracellular matrix regeneration, eliminating bacteria, regulating inflammatory responses, and modulating vascular functions. Therefore, the PMH dressing is a potent, versatile, and effective solution for diabetic wound care, paving the way for advancements in wireless ES wound dressings.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Biomimética , Proteómica , Cicatrización de Heridas , Vendajes
4.
Nanoscale ; 15(45): 18523-18530, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37947012

RESUMEN

ZnO nanocrystals (NCs) are widely employed as an electron transport layer (ETL) in quantum-dot light-emitting diodes (QLEDs). However, the excessive electron mobility, abundant surface defects and poor reproducibility of ZnO NC synthesis are currently the primary restrictive factors influencing the development of QLEDs. In this study, we developed Sn(IV)-doped ZnO NCs as the ETL for constructing highly efficient and long lifetime QLEDs. The introduction of Sn can reduce the surface hydroxyl oxygen defects and alter the electron transport properties of NCs, and thus is beneficial for improving the efficiency of hole-electron recombination in the emitting layer. Meanwhile, a microchannel (MC) reactor is utilized to finely control the synthesis of Zn0.96Sn0.04O NCs, enabling us to achieve uniform size distribution and consistent production reproducibility. Using the Sn(IV)-doped ZnO NCs as the ETL has led to a remarkable enhancement of external quantum efficiency (EQE) for the fabricated red QLED, from 9.2% of the ZnO only device to 15.5% of the Zn0.96Sn0.04O device. Furthermore, the T70 (@1000 cd m-2) of the Zn0.96Sn0.04O device reached 78 h, which is 1.77-fold higher than that of the ZnO only device (44 h). The present work provides an alternative ETL for efficient and stable QLEDs.

5.
Nanoscale ; 15(25): 10480-10483, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37318269

RESUMEN

An introduction to the Nanoscale themed collection on nanomaterials for printed electronics, featuring exciting research on a variety of nanomaterials and techniques used for printed electronics.


Asunto(s)
Nanoestructuras , Electrónica/métodos
6.
Opt Express ; 31(6): 9224-9235, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157496

RESUMEN

This paper reports a multi-functional terahertz (THz) metamaterial based on a nano-imprinting method. The metamaterial is composed of four layers: 4 L resonant layer, dielectric layer, frequency selective layer, and dielectric layer. The 4 L resonant structure can achieve broadband absorption, while the frequency selective layer can achieve transmission of specific band. The nano-imprinting method combines electroplating of nickel mold and printing of silver nano-particle ink. Using this method, the multilayer metamaterial structures can be fabricated on ultrathin flexible substrates to achieve visible light transparency. For verification, a THz metamaterial with broadband absorption in low frequency and efficient transmission in high frequency is designed and printed. The sample's thickness is about 200 µm and area is 65 × 65 mm2. Moreover, a fiber-based multi-mode terahertz time-domain spectroscopy system was built to test its transmission and reflection spectra. The results are consistent with the expectations.

7.
ACS Appl Mater Interfaces ; 15(4): 5931-5941, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36688806

RESUMEN

Textile-based light-emitting devices are attracting more and more attention because of their potential applications in smart clothing, human-computer interfaces, safety warnings, entertainment fashion, etc. However, simple and efficient manufacturing of luminescent devices on fabrics even clothing with excellent stretchability and washability remains challenging. Here, a solvent-free thermal lamination process combined with laser engraving has been proposed to fabricate electroluminescent (EL) devices on textiles. All the preprepared components, such as the bottom electrode, the EL layer, and the top transparent electrode, were thermally laminated on the surface of textiles employing thermoplastic polyurethane (TPU) as the binding matrix. The stretchability, luminance, and interface adhesion of the EL devices were systematically studied, showing excellent mechanical durability at high temperature, in humid environments, withstanding repeated machine washing, and resistant to various forms of physical damage. As a demonstration of potential application, textile-based EL devices were fabricated, which could display colored and pixelated patterns as well as dynamic images. The thermal lamination technology developed in this work can potentially enable people to DIY (do it yourself) fabricate light-emitting devices on clothing using daily tools, which could facilitate the widespread use of textile-based wearable displays.

8.
Nanoscale ; 14(38): 14122-14128, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36102055

RESUMEN

Manufacturing cost is a major concern for electrochromic device (ECD) applications in smart windows for energy saving and low-carbon economy. Fully printing instead of a vacuum-based chemical vapor deposition (CVD) process is favored for large-scale fabrication of ECDs. To adapt to the screen printing process, a UV curable solid-state electrolyte based on lithium bis(trifluoromethane-sulfonyl) imide (LiTFSI) was specially formulated. It contains poly(ethylene glycol) diacrylate (PEG-DA), LiTFSI, water, and ethyl acetate. The optimized ECDs have achieved a 0.6 s bleaching time at 0.6 V and a 1.4 s coloring time at -0.5 V. The ECDs also exhibited excellent stability, which could endure 100 000 cycles of color switching while still maintaining 35% of transmittance change at a 550 nm wavelength. A demo ECD has been fabricated with a screen printed electrolyte, exhibiting stable switching between the clear state and patterned color state.

9.
ACS Appl Mater Interfaces ; 14(34): 39149-39158, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35973830

RESUMEN

Polymeric hole-transport materials (HTMs) have been widely used in quantum-dot light-emitting diodes (QLEDs). However, their solution processability normally causes interlayer erosion and unstable film state, leading to undesired device performance. Besides, the imbalance of hole and electron transport in QLEDs also damages the device interfaces. In this study, we designed a bis-diazo compound, X1, as carbene cross-linker for polymeric HTM. Irradiated by ultraviolet and heating, a poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt(4,4'-(N-(4-butylphenyl))] (TFB)/X1 blend can achieve fast "electronically clean" cross-linking with ∼100% solvent resistance. The cross-linking reduced the stacking behaviors of TFB and thus led to a lower hole-transport mobility, whereas it was a good match of electron mobility. The carbene-mediated TFB cross-linking also downshifted the HOMO level from -5.3 to -5.5 eV, delivering a smaller hole-transport energy barrier. Benefiting from these, the cross-linked QLED showed enhanced device performances over the pristine device, with EQE, power efficiency, and current efficiency being elevated by nearly 20, 15, and 83%, respectively. To the best of our knowledge, this is the first report about a bis-diazo compound based carbene cross-linker built into a polymeric HTM for a QLED with enhanced device performance.

10.
ACS Appl Mater Interfaces ; 14(25): 29144-29155, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35723443

RESUMEN

Textile-based electronics hold great promise because they can endow wearable devices with soft and comfortable characteristics. However, the inherent porosity and fluffiness of fabrics result in high surface roughness, which presents great challenges in the manufacture of high-performance fabric electrodes. In this work, we propose a thermal transfer printing method to address the above challenges, in which electrodes or circuits of silver flake/thermoplastic polyurethane (TPU) composites are prefabricated on a release film by coating and laser engraving and then laminated by hot-pressing to a variety of fabrics and textiles. This universal and scalable production technique enables fabric electrodes to be made without compromising the original wearability, washability, and stretchability of textiles. The prepared fabric electrodes exhibit high conductivity (5.48 × 104 S/cm), high adhesion (≥1750 N/m), good abrasion/washing resistance, high patterning resolution (∼40 µm), and good electromechanical performance up to 50% strain. To demonstrate the potential applications, we developed textile-based radio frequency identification (RFID) tags for remote identification and a large-sized heater for wearable thermotherapy. More importantly, the solvent-free thermal transfer printing technology developed in this paper enables people to DIY interesting flexible electronics on clothes with daily tools, which can promote the commercial application of smart textile-based electronics.

11.
Adv Mater ; 34(17): e2110276, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35243697

RESUMEN

Printed metal nanogrid electrode exhibits superior characteristics for use in flexible organic solar cells (OSCs). However, the high surface roughness and inhomogeneity between grid and blank region is adverse for performance improvement. In this work, a thin amorphous indium tin oxide (ITO) film (α-ITO) is introduced to fill the blank and to improve the charge transporting. The introduction of α-ITO significantly improves the comprehensive properties of metal grid electrode, which exhibits excellent bending resistance and long-term stability under double 85 condition (under 85 °C and 85% relative humidity) for 200 h. Both experimental and simulation results reveal α-ITO with a sheet resistance of 20 000 Ω â–¡-1 is sufficient to improve the charge transporting within the adjacent grids, leading to a remarkable efficiency of 16.54% for 1 cm2 flexible devices. With area increased to 4.00, 9.00, and 25.42 cm2 , the devices still display a performance of 16.22%, 14.69%, and 12.42%, respectively, showing less efficiency loss during upscaling. And the 25.42 cm2 monolithic flexible device exhibits a certificated efficiency of 12.03%. Moreover, the device shows significantly improved air stability relative to conventional high-conductive poly(3,4-ethylenedioxythiophene):polystyrene sulfonate-modified device. All these make the α-ITO-modified Ag/Cu electrode promise to achieve high-efficient and long-term stable large-area flexible OSCs.

12.
Adv Mater ; 34(10): e2107798, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34990514

RESUMEN

Toward next-generation electroluminescent quantum dot (QD) displays, inkjet printing technique has been convinced as one of the most promising low-cost and large-scale manufacturing of patterned quantum dot light-emitting diodes (QLEDs). The development of high-quality and stable QD inks is a key step to push this technology toward practical applications. Herein, a universal ternary-solvent-ink strategy is proposed for the cesium lead halides (CsPbX3 ) perovskite QDs and their corresponding inkjet-printed QLEDs. With this tailor-made ternary halogen-free solvent (naphthene, n-tridecane, and n-nonane) recipe, a highly dispersive and stable CsPbX3 QD ink is obtained, which exhibits much better printability and film-forming ability than that of the binary solvent (naphthene and n-tridecane) system, leading to a much better qualitied perovskite QD thin film. Consequently, a record peak external quantum efficiency (EQE) of 8.54% and maximum luminance of 43 883.39 cd m-2 is achieved in inkjet-printed green perovskite QLEDs, which is much higher than that of the binary-solvent-system-based devices (EQE = 2.26%). Moreover, the ternary-solvent-system exhibits a universal applicability in the inkjet-printed red and blue perovskite QLEDs as well as cadmium (Cd)-based QLEDs. This work demonstrates a new strategy for tailor-making a general ternary-solvent-QD-ink system for efficient inkjet-printed QLEDs as well as the other solution-processed electronic devices in the future.

13.
Analyst ; 146(22): 6815-6821, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34643194

RESUMEN

Solid-state nanochannels have attracted considerable attention for their similar ion transport properties to biological ion channels. The construction of porous ion channels with good stability at the submicro/micrometer scale is very beneficial to develop large-area ion channel devices. In this manuscript, based on in-situ thermal crosslinking of a small organic molecule containing triphenylamine and styrene groups, we construct a heterogeneous membrane with asymmetrical charge and wettability on cylindrical anodic aluminum oxide (AAO) channels (D ≈ 319 nm). This heterogeneous membrane has typical ion current rectification characteristics with a high rectification ratio of 36.9 and good stability. This work provides an effective strategy for the construction of submicrochannel heterogeneous membranes and also broadens the application range of bionic ion channels.


Asunto(s)
Fuerza Protón-Motriz , Transporte Iónico , Porosidad , Humectabilidad
14.
ACS Appl Mater Interfaces ; 12(52): 58369-58377, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33331766

RESUMEN

Efficient approach based on the photochemistry of benzophenone has been developed for the cross-linking of the polymer hole-transporting layer (HTL). The cross-linked poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4'-(N-(4-butylphenyl) (TFB) thin films showed high solvent stability, smooth surface morphology, and improved charge-carrier mobility. The solution-processed red, green, and blue (RGB) quantum dot light-emitting diodes (QLEDs) based on the cross-linked HTLs showed much better performances than the corresponding devices based on the pristine TFB HTLs. The spin-coated red QLEDs based on the cross-linked HTLs showed the maximum current efficiency (CE), the maximum power efficiency (PE), and the peak external quantum efficiency (EQE) of 32.3 cd A-1, 42.3 lm W-1, and 21.4%, respectively. The inkjet-printed red QLEDs with the cross-linked HTLs exhibited the CE, PE, and EQE of 26.5 cd A-1, 37.8 lm W-1, and 18.1%, respectively. The high-performance HTLs were obtained by significantly reducing the amount of cross-linking agents.

15.
Sci Adv ; 6(39)2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32967829

RESUMEN

As a superior self-protection strategy, invisibility has been a topic of long-standing interest in both academia and industry, because of its potential for intriguing applications that have only appeared thus far in science fiction. However, due to the strong dispersion of passive materials, achieving cross-wavelength invisibility remains an open challenge. Inspired by the natural ecological relationship between transparent midwater oceanic animals and the cross-wavelength detection strategy of their predators, we propose a cross-wavelength invisibility concept that integrates various invisibility tactics, where a Boolean metamaterial design procedure is presented to balance divergent material requirements over cross-scale wavelengths. As proof of concept, we experimentally demonstrate longwave cloaking and shortwave transparency simultaneously through a nanoimprinting technique. Our work extends the concept of stealth techniques from individual invisibility tactics targeting a single-wavelength spectrum to an integrated invisibility tactic targeting a cross-wavelength applications and may pave the way for development of cross-wavelength integrated metadevices.

16.
ACS Appl Mater Interfaces ; 12(21): 24074-24085, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32363851

RESUMEN

The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 µm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 µg/cm2) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 µg/cm2. As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 µm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications.

17.
ACS Appl Mater Interfaces ; 12(11): 13087-13095, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32090556

RESUMEN

Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt(4,4'-(N-(4-butylphenyl)))] (TFB) has been widely used as a hole transport layer (HTL) material in cadmium-based quantum dot light-emitting diodes (QLEDs) because of its high hole mobility. However, as the highest occupied molecular orbital (HOMO) energy level of TFB is -5.4 eV, the hole injection from TFB to the quantum dot (QD) layer is higher than 1.5 eV. Such a high oxidation potential at the QD/HTL interface may seriously degrade the device lifetime. In addition, TFB is not resistant to most solvents, which limits its application in inkjet-printed QLED display. In this study, the blended HTL consisting of TFB and cross-linkable small molecular 4,4'-bis(3-vinyl-9H-carbazol-9-yl)1,1'-biphenyl (CBP-V) was introduced into red QLEDs because of the deep HOMO energy level of CBP-V (-6.2 eV). Compared with the TFB-only devices, the external quantum efficiency (EQE) of devices with the blended HTL improved from 15.9 to 22.3% without the increase of turn-on voltage for spin-coating-fabricated devices. Furthermore, the blended HTL prolonged the T90 and T70 lifetime from 5.4 and 31.1 to 39.4 and 148.9 h, respectively. These enhancements in lifetime are attributed to the low hole-injection barrier at the HTL/QD interface and high thermal stability of the blended HTL after cross-linking. Moreover, the cross-linked blended HTL showed excellent solvent resistance after cross-linking, and the EQE of the inkjet-printed red QLEDs reached 16.9%.

18.
RSC Adv ; 10(37): 21845-21851, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35516612

RESUMEN

Here we demonstrate a novel SERS-active substrate assembled by silver nanowire (Ag NW)-embedded porous polystyrene (PS) fibers. Ag NWs are synthesized through a glycerol-mediated solvothermal method firstly, then electrospun into PS porous fibers. The as-synthesized Ag NWs are embedded in PS fiber and aligned orderly along the axial direction. Porous structure appears in PS fiber due to the phase separation induced by rapid evaporation of solvents. Large amounts of holes not only greatly improve the sample collection efficiency of the SERS-active substrate, but also significantly facilitate the adsorption of target molecules on the surface of Ag NWs, thus increasing the probability of enhancement of target molecules. In addition, compared with polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP), PS has better solvent resistance. The detection limit of 4-aminothiophenol (4-ATP) on our fabricated electrospun fiber mats is 10-7 M, and the electrospun fiber mats showed good reproducibility of SERS signal detection. This study proposes a feasible strategy for the large-scale preparation of flexible SERS-active substrate assembled by Ag NW-embedded porous PS fibers. The produced flexible SERS substrates may have potential application in wearable sensors for the trace detection of chemical and biological molecules.

19.
Adv Sci (Weinh) ; 6(22): 1901490, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31763148

RESUMEN

With the rapid progress of organic solar cells (OSCs), improvement in the efficiency of large-area flexible OSCs (>1 cm2) is crucial for real applications. However, the development of the large-area flexible OSCs severely lags behind the growth of the small-area OSCs, with the electrical loss due to the large sheet resistance of the electrode being a main reason. Herein, a high conductive and high transparent Ag/Cu composite grid with sheet resistance <1 Ω sq-1 and an average visible light transparency of 84% is produced as the transparent conducting electrode of flexible OSCs. Based on this Ag/Cu composite grid electrode, a high efficiency of 12.26% for 1 cm2 flexible OSCs is achieved. The performances of large-area flexible OSCs also reach 7.79% (4 cm2) and 7.35% (9 cm2), respectively, which are much higher than those of the control devices with conventional flexible indium tin oxide electrodes. Surface planarization using highly conductive PEDOT:PSS and modification of the ZnO buffer layer by zirconium acetylacetonate (ZrAcac) are two necessary steps to achieve high performance. The flexible OSCs employing Ag/Cu grid have excellent mechanical bending resistance, maintaining high performance after bending at a radius of 2 mm.

20.
Small ; 15(16): e1900111, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30883038

RESUMEN

Quantum dots light-emitting diodes (QLEDs) have attracted much interest owing to their compatibility with low-cost inkjet printing technology and potential for use in large-area full-color pixelated display. However, it is challenging to fabricate high efficiency inkjet-printed QLEDs because of the coffee ring effects and inferior resistance to solvents from the underlying polymer film during the inkjet printing process. In this study, a novel crosslinkable hole transport material, 4,4'-bis(3-vinyl-9H-carbazol-9-yl)-1,1'-biphenyl (CBP-V) which is small-molecule based, is synthesized and investigated for inkjet printing of QLEDs. The resulting CBP-V film after thermal curing exhibits excellent solvent resistance properties without any initiators. An added advantage is that the crosslinked CBP-V film has a sufficiently low highest occupied molecular orbital energy level (≈-6.2 eV), high film compactness, and high hole mobility, which can thus promote the hole injection into quantum dots (QDs) and improve the charge carrier balance within the QD emitting layers. A red QLED is successfully fabricated by inkjet printing a CBP-V and QDs bilayer. Maximum external quantum efficiency of 11.6% is achieved, which is 92% of a reference spin-coated QLED (12.6%). This is the first report of such high-efficiency inkjet-printed multilayer QLEDs and demonstrates a unique and effective approach to inkjet printing fabrication of high-performance QLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA