Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Chem Sci ; 15(13): 4631-4708, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38550685

RESUMEN

Carbon dioxide (CO2) conversion has attracted much interest recently owing to its importance in both scientific research and practical applications, but still faces a bottleneck in selectivity control and mechanism understanding owing to diversified active sites. Single-atom catalysts (SACs) featuring isolated and well-defined active centers are proved to not only exhibit unparalleled performances in various processes of CO2 conversion but also provide excellent research paradigms by circumventing the heterogeneity of active sites. Herein, we will not only critically review recent progress on the application of SACs in chemical CO2 conversion based on previous comprehension of general thermodynamics and kinetics, but also try to offer a multi-level understanding of SACs from a molecular point of view in terms of the central atom, coordination environment, support effect and synergy with other active centers. Meanwhile, crucial scientific issues of research methods will be also identified and highlighted, followed by a future outlook that is expected to present potential aspects of further developments.

2.
J Environ Sci (China) ; 140: 2-11, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331500

RESUMEN

In2O3 has been found a promising application in CO2 hydrogenation to methanol, which is beneficial to the utilization of CO2. The oxygen vacancy (Ov) site is identified as the catalytic active center of this reaction. However, there remains a great challenge to understand the relations between the state of oxygen species in In2O3 and the catalytic performance for CO2 hydrogenation to methanol. In the present work, we compare the properties of multiple In2O3 and Ir-promoted In2O3 (Ir-In2O3) catalysts with different Ir loadings and after being pretreated under different reduction temperatures. The CO2 conversion rate of Ir-In2O3 is more promoted than that of pure In2O3. With only a small amount of Ir loading, the highly dispersed Ir species on In2O3 increase the concentration of Ov sites and enhance the activity. By finely tuning the catalyst structure, Ir-In2O3 with an Ir loading of 0.16 wt.% and pre-reduction treatment under 300°C exhibits the highest methanol yield of 146 mgCH3OH/(gcat·hr). Characterizations of Raman, electron paramagnetic resonance, X-ray photoelectron spectroscopy, CO2-temperature programmed desorption and CO2-pulse adsorption for the catalysts confirm that more Ov sites can be generated under higher reduction temperature, which will induce a facile CO2 adsorption and desorption cycle. Higher performance for methanol production requires an adequate dynamic balance among the surface oxygen atoms and vacancies, which guides us to find more suitable conditions for catalyst pretreatment and reaction.


Asunto(s)
Dióxido de Carbono , Metanol , Hidrogenación , Catálisis , Oxígeno
3.
Am J Physiol Cell Physiol ; 326(2): C457-C472, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145299

RESUMEN

Cardiac fibroblasts are essential for the homeostasis of the extracellular matrix, whose remodeling in many cardiovascular diseases leads to fibrosis. Long noncoding RNAs (lncRNAs) are associated with cardiac pathologies, but their functions in cardiac fibroblasts and contributions to cardiac fibrosis remain unclear. Here, we aimed to identify fibroblast-enriched lncRNAs essential in myocardial infarction (MI)-induced fibrosis and explore the molecular mechanisms responsible for their functions. Global lncRNA profiling was performed in post-MI mouse heart ventricles and transforming growth factor-ß (TGF-ß)-treated primary cardiac fibroblasts and confirmed in published data sets. We identified the cardiac fibroblast-enriched lncPostn, whose expression is stimulated in cardiac fibrosis induced by MI and the extracellular growth factor TGF-ß. The promoter of lncPostn contains a functional TGF-ß response element, and lncPostn knockdown suppresses TGF-ß-stimulated cardiac fibroblast activation and improves cardiac functions post-MI. LncPostn stabilizes and recruits EP300 to the profibrotic periostin's promoter, representing a major mechanism for its transcriptional activation. Moreover, both MI and TGF-ß enhance lncPostn expression while suppressing the cellular growth gatekeeper p53. TGF-ß and p53 knockdown-induced profibrotic gene expression and fibrosis occur mainly through lncPostn and show additive effects. Finally, levels of serum lncPostn are significantly increased in patients' postacute MI and show a strong correlation with fibrosis markers, revealing a potential biomarker of cardiac fibrosis. Our findings identify the fibroblast-enriched lncPostn as a potent profibrotic factor, providing a transcriptional link between TGF-ß and p53 signaling pathways to regulate fibrosis in cardiac fibroblasts.NEW & NOTEWORTHY Cardiac fibroblasts are essential for the homeostasis of the extracellular matrix, whose remodeling in many cardiovascular diseases leads to fibrosis. Long noncoding RNAs are functional and contribute to the biological processes of cardiovascular development and disorders. Our findings identify the fibroblast-enriched lncPostn as a potent profibrotic factor and demonstrate that serum lncPostn level may serve as a potential biomarker of human cardiac fibrosis postacute myocardial infarction.


Asunto(s)
Cardiomiopatías , Infarto del Miocardio , ARN Largo no Codificante , Humanos , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Fibrosis , Fibroblastos/metabolismo , Transducción de Señal , Biomarcadores/metabolismo
4.
J Agric Food Chem ; 71(43): 16362-16370, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862591

RESUMEN

Abnormal levels of 2-hydroxy fatty acids (2-OH FAs) are characterized in multiple diseases, and their quantification in foodstuffs is critical to identify the sources of supplementation for potential treatment. However, due to the structural complexity and limited available standards, the comprehensive profiling of 2-OH FAs remains an ongoing challenge. Herein, an innovative approach based on gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed to determine the full profile of these FA metabolites. MS and MS/MS spectra of the trimethylsilyl (TMS) derivatives of 2-OH fatty acid methyl esters (FAMEs) were collected for peak annotation by their signature fragmentation patterns. The structures were further confirmed by validated structure-dependent retention time (RT) prediction models, taking advantage of the correlation between the RT, carbon chain length, and double bond number from commercial standards and pseudostandards identified in the whole-brain samples from mice. An in-house database containing 50 saturated and monounsaturated 2-OH FAs was established, which is expandible when additional molecular species with different chain lengths and backbone structures are identified in the future. A quantitation method was then developed by scheduled multiple reaction monitoring (MRM) and applied to investigate the profiling of 2-OH FAs in echinoderms. Our results revealed that the levels of total 2-OH FAs in sea cucumber Apostichopus japonicas (8.40 ± 0.28 mg/g dry weight) and starfish Asterias amurensis (7.51 ± 0.18 mg/g dry weight) are much higher than that in sea urchin Mesocentrotus nudus (531 ± 108 µg/g dry weight). Moreover, 2-OH C24:1 is the predominant molecular species accounting for 67.9% of the total 2-OH FA in sea cucumber, while 2-OH C16:0 is the major molecular species in starfish. In conclusion, the current innovative GC-MS approach has successfully characterized distinct molecular species of 2-OH FAs that are highly present in sea cucumbers and starfish. Thus, these findings suggest the possibility of developing future feeding strategies for preventing and treating diseases associated with 2-OH FA deficiency.


Asunto(s)
Pepinos de Mar , Espectrometría de Masas en Tándem , Animales , Ratones , Ácidos Grasos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Especificidad de la Especie
5.
Ecotoxicol Environ Saf ; 266: 115600, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862749

RESUMEN

Rare earth elements (REEs) have been broad application in a range of industries, including the electronics industry, advanced materials, and medicine. However, health risks associated with REEs received increasing attention. 31 residents (16 males and 15 females) from Bayan Obo mining in Inner Mongolia, China, were enrolled in this study. In total, 677 food samples, the major human exposure matrices (drinking water and duplicate diets), and bio-samples (urine and blood) of 31 participants were obtained. The concentrations of REEs were measured to characterize their external and internal exposures, and the potential health risk of exposure to REE through the ingestion route was analyzed. The results revealed that the detection rate in blood samples (100%) is higher than in urine (32.86%), and only a few REEs were detected in water samples (8.06%), the urine concentrations were considerably lower than in blood. Exposure to REEs through drinking water was considered negligible compared to food intake. Lanthanum and cerium were the most concentrated REEs in food samples. Health risks were calculated based on a dose-response model, the total hazard quotients (THQ) values for all food groups were within normal levels, and the Monte Carlo simulation results show that the 5th, the 50th, and the 95th percentile values of HI were found as 1.45 × 10-2, 3.52 × 10-2, and 9.13 × 10-2, respectively, neither exceeds the threshold, indicating low health risks associated with food intake exposure for this area. The sensitivity results suggest that underweight people are at higher risk, cerium, lanthanum, and yttrium concentrations, and food intake contributes more to health risks. The use of probability distribution methods can improve the accuracy of the results. The cumulative health risk through food intake is negligible, and further attention should be paid to the health risk induced by other routes of exposure to REEs by the local residents.


Asunto(s)
Cerio , Agua Potable , Metales de Tierras Raras , Masculino , Femenino , Humanos , Lantano , Metales de Tierras Raras/análisis , China , Dieta , Medición de Riesgo
6.
Angew Chem Int Ed Engl ; 62(37): e202309377, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37503791

RESUMEN

Selective synthesis of specific value-added aromatics from CO2 hydrogenation is of paramount interest for mitigating energy and climate problems caused by CO2 emission. Herein, we report a highly active composite catalyst of ZnZrO and HZSM-5 (ZZO/Z5-SG) for xylene synthesis from CO2 hydrogenation via a coupling reaction in the presence of toluene, achieving a xylene selectivity of 86.5 % with CO2 conversion of 10.5 %. A remarkably high space time yield of xylene could reach 215 mg gcat -1 h-1 , surpassing most reported catalysts for CO2 hydrogenation. The enhanced performance of ZZO/Z5-SG could be due to high dispersion and abundant oxygen vacancies of the ZZO component for CO2 adsorption, more feasible hydrogen activation and transfer due to the close interaction between the two components, and enhanced stability of the formate intermediate. The consumption of methoxy and methanol from the deep hydrogenation of formate by introduced toluene also propels an oriented conversion of CO2 .

7.
Mitochondrion ; 72: 22-32, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37451354

RESUMEN

Mitochondrial functions play a crucial role in determining the metabolic and thermogenic status of brown adipocytes. Increasing evidence reveals that the mitochondrial oxidative phosphorylation (OXPHOS) system plays an important role in brown adipogenesis, but the mechanistic insights are limited. Herein, we explored the potential metabolic mechanisms leading to OXPHOS regulation of brown adipogenesis in pharmacological and genetic models of mitochondrial respiratory complex I deficiency. OXPHOS deficiency inhibits brown adipogenesis through disruption of the brown adipogenic transcription circuit without affecting ATP levels. Neither blockage of calcium signaling nor antioxidant treatment can rescue the suppressed brown adipogenesis. Metabolomics analysis revealed a decrease in levels of tricarboxylic acid cycle intermediates and heme. Heme supplementation specifically enhances respiratory complex I activity without affecting complex II and partially reverses the inhibited brown adipogenesis by OXPHOS deficiency. Moreover, the regulation of brown adipogenesis by the OXPHOS-heme axis may be due to the suppressed histone methylation status by increasing histone demethylation. In summary, our findings identified a heme-sensing retrograde signaling pathway that connects mitochondrial OXPHOS to the regulation of brown adipocyte differentiation and metabolic functions.


Asunto(s)
Adipogénesis , Histonas , Adipogénesis/genética , Histonas/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Desmetilación , Diferenciación Celular
8.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-998987

RESUMEN

BackgroundType 1 diabetes is caused by a chronic immune response that destroys islet beta cells, resulting in elevated blood glucose. Mesenchymal stem cells can prevent and treat the development of diabetes and its complications. However, little is known about the effects and potential mechanisms of Gingival mesenchymal stem cells (GMSCs) in preventing diabetes. The aim of this study is to investigate the mechanism of GMSCs in preventing type 1 diabetes in mice and to find targets for clinical treatment of diabetes. MethodsWe injected human GMSCs into NOD mice to observe the trend of blood glucose, observed the survival of pancreatic β-cells by immunohistochemistry, and detected the change of immune cells in the spleen of mice by flow analysis. Finally, the immune cells in NOD mice were transfused into NOD-SCID mice to observe the onset of diabetes in NOD-SCID mice. ResultsGMSCs significantly reduced the incidence of diabetes in NOD mice, with 64% of control mice developing diabetes at 27 weeks of age compared with 35% in the GMSC group, P=0.013. The percentage of Follicular B cells(FO B cell) in the spleen of GMSCs-treated mice decreased from (52.2±4.1)% to (43.2±5.3)%, P=0.008, while other types of immune cells did not change significantly. The immunohistochemical results showed that GMSCs could effectively improve the survival of pancreatic β-cells, which could continuously produce insulin to control blood glucose. Finally, we found the spleen cells transfusion could prevent the development of diabetes in NOD-SCID mice. ConclusionGMSCs can reduce diabetes in mice by reducing FO B cells in the spleen.

9.
Biomed Res Int ; 2022: 4064588, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360520

RESUMEN

Objective: Dietary supplements (DS) may improve micronutrient deficiencies, but the unique eating habits and cultural customs of the Chinese Mongolian population affect their choice of DS. Therefore, this study adopted a cross-sectional method to explore the current status of DS use and to assess the influencing factors in the Mongolian population in Inner Mongolia, China. Methods: We used a multistage random cluster sampling method to select 1,434 Mongolian people aged ≥ 18 years in Hohhot and Xilinhot, Inner Mongolia. Data regarding general patient characteristics and DS use through questionnaire surveys were obtained, and the blood plasma was collected for biochemical index detection. The binary logistic regression and decision tree algorithm were used to predict the factors influencing DS use among the Mongolian population. Results: Among 1,434 participants that completed the baseline survey, the usage rate of DS was 18.83%, and more women than men used DS (P = 0.017). Higher use of DS was reported among individuals aged ≤ 34 years, but this difference is not statistically significant (P = 0.052). Usage rate was higher among those living in urban areas (P < 0.001), those with higher education (P < 0.001), those engaged in mental work (P < 0.001), and nonsmokers (P = 0.019). The biochemical test results showed that the proportion of people with abnormal total cholesterol levels using DS was lower (P = 0.003), but that of those with abnormal triglyceride levels using DS was higher (P = 0.001), compared with the proportion of those with normal levels in each case. The most commonly used supplement was calcium (58.15%). Education level was the main factor affecting DS intake. The results of the binary logistic regression model and decision tree model both showed that region, educational level, and abnormal triglyceride levels were significant factors influencing DS intake among Mongolians. Conclusion: Findings from this study indicate that DS intake is uncommon in the Mongolian population. In addition, sex, region, education level, and triglyceride levels may influence DS use.


Asunto(s)
Pueblo Asiatico , Suplementos Dietéticos , Adolescente , Adulto , China/epidemiología , Estudios Transversales , Femenino , Humanos , Masculino , Triglicéridos
10.
Ecotoxicol Environ Saf ; 234: 113360, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35248927

RESUMEN

Groundwater is an important natural resource of drinking water in rural areas in Inner Mongolia, China. In this study, 4438 drinking groundwater samples were collected from the rural areas of 81 counties in Inner Mongolia, and were analyzed for 16 parameters, including pH, total hardness (TH), chemical oxygen demand (COD), total dissolved solids (TDS), sulfate (SO42-), chloride (Cl-), fluoride (F-), iron (Fe), manganese (Mn), arsenic (As), cadmium (Cd), hexavalent chromium (Cr), lead (Pb), aluminum (Al), cuprum (Cu), zinc (Zn). The groundwater quality was evaluated with water quality index (WQI) and human health risk assessment (HRA). Monte Carlo simulation were applied for the uncertainty and sensitivity analysis in the health risk assessment. The spatial map was employed based on the inverse distance weighted (IDW) interpolation technique. The results reveal that while the hazard quotient (HQ) suggests that the risk of single element contamination is feeble, the hazard index (HI) indicates a potential health risk for the local population. The observed cumulative carcinogenic risk (CCR) indicates a probable risks of carcinogenic health hazards in the study area. The sensitivity analysis revealed that daily ingestion rate (IR), exposure frequency (EF), and the concentrations of As, Mn, F-, and Cr are the most influential parameters for health hazards. The highly polluted areas are mainly distributed in the central and western regions of Inner Mongolia, including Xianghuangqi, New Barag Zuoqi, and Togtoh. It is observed that the groundwater may cause a potential health risk after long-term ingestion. The results of this study will contribute to groundwater management and protection in Inner Mongolia.

11.
J Epidemiol Glob Health ; 12(1): 133-142, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34978710

RESUMEN

OBJECTIVES: To assess the impact of cardiovascular disease (CVD) risk factor control on health-related quality of life (HRQoL), as well as the other influencing factors of HRQoL among high CVD risk individuals. METHODS: From 2015 to 2017, residents of six villages or communities in Inner Mongolia, selected using a multi-stage stratified cluster random sampling method, were invited to complete a questionnaire and undergo physical examination and laboratory testing. We selected participants whose predicted 10-year risk for CVD exceeded 10% as those with high CVD risk. HRQoL in individuals with high CVD risk was investigated based on the EuroQol-5 Dimension (EQ-5D) scale. The Chinese utility value integral system was used to calculate EQ-5D utility scores, and the Tobit regression model was used to analyze the influencing factors of HRQoL among individuals with high CVD risk. RESULTS: Of 13,359 participants with high CVD risk, 65.63% reported no problems in any of the five dimensions; the most frequently reported difficulty was pain/discomfort. The median utility score was 1.000 (0.869, 1.000). Participants with hypertension, and uncontrolled glycemic and blood lipids had lower HRQoL. In addition, sex, age, living environment, education level, household income, and medical insurance were influencing factors of HRQoL. CONCLUSION: Sex, age, living environment, education level, household income, medical insurance, hypertension, and whether glycemic and blood lipids control or not are related to HRQoL of high CVD risk individuals.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , China/epidemiología , Estudios Transversales , Humanos , Calidad de Vida , Factores de Riesgo , Encuestas y Cuestionarios
12.
J Biomed Nanotechnol ; 17(7): 1349-1363, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34446138

RESUMEN

Despite the widespread use of silica nanoparticles (SiNPs), their metabolic impact and mechanisms of action have not been well studied. Exposure to SiNPs induces insulin resistance (IR) in hepatocytes by endoplasmic reticulum (ER) stress via inositol-requiring protein 1α (IRE1α) activation of c-Jun N-terminal kinases (JNK). It has been well established that stearoyl CoA desaturase (SCD1) and its major product oleic acid elicited beneficial effects in restoring ER homeostasis. However, the potential coordination of SCD1 and IRE1α in determining SiNP regulation of insulin signaling is unclear. Herein, we investigated the effects of SCD1 and oleic acid on IR induced by SiNPs or thapsigargin in hepatocytes. SCD1 overexpression or oleic acid efficiently reversed SiNP-induced ER stress and IR, whereas the effects of thapsigargin treatment could not be restored. Thapsigargin diminished SCD1 protein levels, leading to the accumulation of IRE1α and sustained activation of the IRE1α/JNK pathway. Moreover, knockdown of activating transcription factor 4 (ATF4) upstream of SCD1 suppressed SiNP-induced SCD1 expression, rescued the activated IRE1α, and inhibited insulin signaling but was not able to restore the effects of thapsigargin. Collectively, downregulation of SCD1 and excess accumulation of IRE1α protein prevented the beneficial effects of exogenous oleic acid on IR induced by ER stress. Our results provide valuable mechanistic insights into the synergic regulation of IR by SiNPs and ER stress and suggest a combinational strategy to restore ER homeostasis by targeting SCD1 and IRE1α proteins, as well as supplementation of unsaturated fatty acids.


Asunto(s)
Resistencia a la Insulina , Nanopartículas , Humanos , Inositol , Ácido Oléico , Proteínas Serina-Treonina Quinasas , Dióxido de Silicio , Estearoil-CoA Desaturasa/genética
13.
Cancer Res ; 81(2): 289-302, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33203703

RESUMEN

Alteration in lipid composition is an important metabolic adaptation by cancer cells to support tumorigenesis and metastasis. Fatty acid 2-hydroxylase (FA2H) introduces a chiral hydroxyl group at the second carbon of fatty acid (FA) backbones and influences lipid structures and metabolic signaling. However, the underlying mechanisms through which FA 2-hydroxylation is coupled to metabolic adaptation and tumor growth remain elusive. Here, we show that FA2H regulates specific metabolic reprogramming and oncogenic signaling in the development of colorectal cancer. FA2H is highly expressed in normal colorectal tissues. Assessments through deciphering both published high-throughput data and curated human colorectal cancer samples revealed significant suppression of FA2H in tumors, which is correlated with unfavorable prognosis. Experiments with multiple models of genetic manipulation or treatment with an enzymatic product of FA2H, (R)-2-hydroxy palmitic acid, demonstrated that FA 2-hydroxylation inhibits colorectal cancer cell proliferation, migration, epithelial-to-mesenchymal transition progression, and tumor growth. Bioinformatics analysis suggested that FA2H functions through AMP-activated protein kinase/Yes-associated protein (AMPK/YAP) pathway, which was confirmed in colorectal cancer cells, as well as in tumors. Lipidomics analysis revealed an accumulation of polyunsaturated fatty acids in cells with FA2H overexpression, which may contribute to the observed nutrient deficiency and AMPK activation. Collectively, these data demonstrate that FA 2-hydroxylation initiates a metabolic signaling cascade to suppress colorectal tumor growth and metastasis via the YAP transcriptional axis and provides a strategy to improve colorectal cancer treatment. SIGNIFICANCE: These findings identify a novel metabolic mechanism regulating the tumor suppressor function of FA 2-hydroxylation in colorectal cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología , Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica , Oxigenasas de Función Mixta/metabolismo , Factores de Transcripción/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ácidos Grasos/química , Humanos , Hidroxilación , Metástasis Linfática , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Pronóstico , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP
14.
BMC Biol ; 18(1): 107, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859196

RESUMEN

BACKGROUND: When stressed, eukaryotic cells produce triacylglycerol (TAG) to store nutrients and mobilize autophagy to combat internal damage. We and others previously reported that in yeast, elimination of TAG synthesizing enzymes inhibits autophagy under nitrogen starvation, yet the underlying mechanism has remained elusive. RESULTS: Here, we show that disruption of TAG synthesis led to diacylglycerol (DAG) accumulation and its relocation from the vacuolar membrane to the endoplasmic reticulum (ER). We further show that, beyond autophagy, ER-accumulated DAG caused severe defects in the endomembrane system, including disturbing the balance of ER-Golgi protein trafficking, manifesting in bulging of ER and loss of the Golgi apparatus. Genetic or chemical manipulations that increase consumption or decrease supply of DAG reversed these defects. In contrast, increased amounts of precursors of glycerolipid synthesis, including phosphatidic acid and free fatty acids, did not replicate the effects of excess DAG. We also provide evidence that the observed endomembrane defects do not rely on Golgi-produced DAG, Pkc1 signaling, or the unfolded protein response. CONCLUSIONS: This work identifies DAG as the critical lipid molecule responsible for autophagy inhibition under condition of defective TAG synthesis and demonstrates the disruption of ER and Golgi function by excess DAG as the potential cause of the autophagy defect.


Asunto(s)
Autofagia , Membrana Celular/fisiología , Diglicéridos/metabolismo , Homeostasis , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas
15.
Nat Commun ; 11(1): 3185, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581251

RESUMEN

The activity of Fischer-Tropsch synthesis (FTS) on metal-based nanocatalysts can be greatly promoted by the support of reducible oxides, while the role of support remains elusive. Herein, by varying the reduction condition to regulate the TiOx overlayer on Ru nanocatalysts, the reactivity of Ru/TiO2 nanocatalysts can be differentially modulated. The activity in FTS shows a volcano-like trend with increasing reduction temperature from 200 to 600 °C. Such a variation of activity is characterized to be related to the activation of CO on the TiOx overlayer at Ru/TiO2 interfaces. Further theoretical calculations suggest that the formation of reduced TiOx occurs facilely on the Ru surface, and it involves in the catalytic mechanism of FTS to facilitate the CO bond cleavage kinetically. This study provides a deep insight on the mechanism of TiOx overlayer in FTS, and offers an effective approach to tuning catalytic reactivity of metal nanocatalysts on reducible oxides.

16.
Hepatology ; 72(5): 1569-1585, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32103509

RESUMEN

BACKGROUND AND AIMS: The regulation of hepatic very-low-density lipoprotein (VLDL) secretion is vital for lipid metabolism whose pathogenetic status is involved in fatty liver disease and dyslipidemia seen in hepatic steatosis. Accumulated evidence suggest that apolipoprotein E (ApoE) is closely related to hepatic VLDL secretion. Here, we report that the expression of patatin-like phospholipase domain containing protein 7 (PNPLA7) is strongly induced by hepatic steatosis and positively correlates with plasma triacylglycerol (TAG) levels in the human subjects, whereas the role of PNPLA7 in hepatic VLDL secretion is unknown. APPROACH AND RESULTS: Herein, with genetic manipulation in the mice, the deficiency of hepatic PNPLA7 expression resulted in reduced VLDL secretion accompanied by enhanced hepatic lipid accumulation and decreased hepatic ApoE expression. Furthermore, knockdown of PNPLA7 in the livers of the db/db mice also resulted in significant reduction in plasma TAG level but aggravated hepatic steatosis. Importantly, we observed that PNPLA7 interacted with ApoE and presumably at the site of endoplasmic reticulum. Mechanistically, we have shown that PNPLA7 could modulate polyubiquitination and proteasomal-mediated degradation of ApoE. Overexpressed ApoE restored the impaired VLDL-TAG metabolism in PNPLA7-knockdown primary hepatocytes. CONCLUSION: PNPLA7 plays a critical role in regulating hepatic VLDL secretion by modulating ApoE stability through its interaction with ApoE.


Asunto(s)
Apolipoproteínas E/metabolismo , Hígado Graso/metabolismo , Lipasa/metabolismo , Hígado/patología , Lisofosfolipasa/metabolismo , Animales , Apolipoproteínas E/genética , Línea Celular Tumoral , Retículo Endoplásmico/patología , Hígado Graso/sangre , Hígado Graso/diagnóstico , Hígado Graso/cirugía , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Lipasa/genética , Metabolismo de los Lípidos , Lipoproteínas VLDL/sangre , Lipoproteínas VLDL/metabolismo , Hígado/cirugía , Lisofosfolipasa/genética , Masculino , Ratones , Ratones Noqueados para ApoE , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteolisis , Índice de Severidad de la Enfermedad , Triglicéridos/sangre , Triglicéridos/metabolismo , Ubiquitinación
17.
Redox Biol ; 24: 101167, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30921635

RESUMEN

Peroxisomes are ubiquitous cellular organelles required for specific pathways of fatty acid oxidation and lipid synthesis, and until recently their functions in adipocytes have not been well appreciated. Importantly, peroxisomes host many oxygen-consumption reactions and play a major role in generation and detoxification of reactive oxygen species (ROS) and reactive nitrogen species (RNS), influencing whole cell redox status. Here, we review recent progress in peroxisomal functions in lipid metabolism as related to ROS/RNS metabolism and discuss the roles of peroxisomal redox homeostasis in adipogenesis and adipocyte metabolism. We provide a framework for understanding redox regulation of peroxisomal functions in adipocytes together with testable hypotheses for developing therapies for obesity and the related metabolic diseases.


Asunto(s)
Adipocitos/metabolismo , Metabolismo Energético , Homeostasis , Oxidación-Reducción , Peroxisomas/metabolismo , Adipogénesis , Metabolismo de los Lípidos , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
18.
EBioMedicine ; 41: 256-267, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30738828

RESUMEN

BACKGROUND: Most gastric cancers are diagnosed at an advanced or metastatic stage with poor prognosis and survival rate. Fatty acid 2-hydroxylase (FA2H) with high expression in stomach generates chiral (R)-2-hydroxy FAs ((R)-2-OHFAs) and regulates glucose utilization which is important for cell proliferation and invasiveness. We hypothesized that FA2H impacts gastric tumor growth and could represent a novel target to improve gastric cancer therapy. METHODS: FA2H level in 117 human gastric tumors and its association with tumor growth, metastasis and overall survival were examined. Its roles and potential mechanisms in regulating tumor growth were studied by genetic and pharmacological manipulation of gastric cancer cells in vitro and in vivo. FINDINGS: FA2H level was lower in gastric tumor tissues as compared to surrounding tissues and associated with clinicopathologic status of patients, which were confirmed by analyses of multiple published datasets. FA2H depletion decreased tumor chemosensitivity, partially due to inhibition of AMPK and activation of the mTOR/S6K1/Gli1 pathway. Conversely, FA2H overexpression or treatment with (R)-2-OHFAs had the opposite effects. In line with these in vitro observations, FA2H knockdown promoted tumor growth with increased level of tumor Gli1 in vivo. Moreover, (R)-2-OHFA treatment significantly decreased Gli1 level in gastric tumors and enhanced tumor chemosensitivity to cisplatin, while alleviating the chemotherapy-induced weight loss in mice. INTERPRETATION: Our results demonstrate that FA2H plays an important role in regulating Hh signaling and gastric tumor growth and suggest that (R)-2-OHFAs could be effective as nontoxic wide-spectrum drugs to promote chemosensitivity. FUND: Grants of NSF, NIH, and PAPD.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Cisplatino/uso terapéutico , Oxigenasas de Función Mixta/genética , Neoplasias Gástricas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oxigenasas de Función Mixta/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Serina-Treonina Quinasas TOR/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo
19.
J Infect Dis ; 219(12): 1879-1886, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30649366

RESUMEN

BACKGROUND: The purpose of this study was to investigate the effect of BK polyomavirus (BKPyV infection of glomerular parietal epithelial cells (GPECs) on graft outcome in kidney transplant recipients with BKPyV-associated nephropathy (BKPyVAN). METHODS: A total of 152 kidney transplant recipients with BKPyVAN were divided into 31 with (GPEC-positive group) and 121 without (GPEC-negative group) BKPyV-infected GPECs. Clinicopathological characteristics and allograft survival were compared between the groups. RESULTS: The GPEC-positive group had more patients with advanced-stage BKPyVAN than the GPEC-negative group (P < .001). At the last follow-up, the GPEC-positive group had a significantly higher serum creatinine level than the GPEC-negative group. The graft loss rate in the GPEC-positive group was higher than that in the GPEC-negative group (32.3% vs 12.4%; P = .008). Kaplan-Meier analysis showed that the graft survival rate in the GPEC-positive group was lower than that in the GPEC-negative group (log-rank test, P = .004). Multivariate Cox regression analysis demonstrated that BKPyV infection of GPECs was an independent risk factor for graft survival (hazard ratio, 3.54; 95% confidence interval, 1.43-8.76; P = .006). CONCLUSIONS: GPEC infection in patients with BKPyVAN indicates more-severe pathological damage and a rapid decline in renal function. BKPyV infection of GPECs is an independent risk factor for allograft loss.


Asunto(s)
Virus BK , Rechazo de Injerto , Glomérulos Renales , Trasplante de Riñón/efectos adversos , Infecciones por Polyomavirus , Infecciones Tumorales por Virus , Adulto , Femenino , Rechazo de Injerto/patología , Rechazo de Injerto/virología , Humanos , Riñón/patología , Riñón/virología , Enfermedades Renales/patología , Enfermedades Renales/virología , Glomérulos Renales/citología , Glomérulos Renales/patología , Glomérulos Renales/virología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
20.
Acc Chem Res ; 52(3): 656-664, 2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30512920

RESUMEN

Simply yet powerfully, single-atom catalysts (SACs) with atomically dispersed metal active centers on supports have received a growing interest in a wide range of catalytic reactions. As a specific example, SACs have exhibited distinctive performances in CO2 chemical conversions. The unique structures of SACs are appealing for adsorptive activation of CO2 molecules, transfer of intermediates from support to active metal sites, and production of desirable products in CO2 conversion. In this Account, we have exemplified our recent endeavors in the development of SACs toward CO2 conversions in thermal catalysis and electrocatalysis. In terms of the support not only stabilizing but also working collaboratively with the single active sites, the proper choice of support is of great importance for its stability, activity, and selectivity in single-atom catalysis. Three distinctive strategies for SAC architectures-lattice-matched oxide supported, heteroatom-doped carbon anchored, and mimetic ligand chelated-are intensively discussed from the perspective of support design for SACs in different reaction environments. To achieve a high-temperature thermal reduction of CO2 to CO, TiO2 (rutile), lattice-matched to the IrO2 active site, was chosen as a support to realize the thermal stability of Ir1/TiO2 SAC, and it shows great capability toward CO2 conversion and excellent selectivity to CO due to the effective block of the over-reduction of CO2 to methane over single Ir active sites. In the electrochemical reduction of CO2 at low temperature, sulfur co-doped N-graphene was developed to achieve unique d9-Ni single atoms on the conductive graphene support, by which not only were the atomic Ni active sites trapped into the matrix of graphene for its stabilization, but also the modulation of electronic configuration of mononuclear Ni centers promoted the CO2 activation through facile electron transfer with an improved electroreduction activity. Inspired by the Ir mononuclear homogeneous catalysts in CO2 hydrogenation to formate, porous organic polymers (POPs) functionalized with a reticular aminopyridine group were purposely fabricated to mimic the homogeneous ligand environment for chelating the Ir single-atom active center, and this quasi-homogeneous Ir1/POP catalyst manifests high efficiency for hydrogenation of CO2 to formate under mild conditions in the liquid phase. Such SACs are of paramount importance for the transformation of CO2, with their coordination environment helping in the activation of CO2. Since the energy barrier for the dissociation of the second C-O bond of CO2 on single-atom sites is very high, these catalysts can give high selectivities toward CO or formate products. Thanks to SACs, the conversion of CO2 has become much easier in various chemical environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...