Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Technol ; : 1-15, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38525899

RESUMEN

The formation of mine-contaminated groundwater as a result of acidic mine drainage from the oxidation of sulfur-containing minerals entering the groundwater. Biological permeable reactive barrier (Bio-PRB) technology is excellent for the remediation of mine-contaminated groundwater. Usually, the organic substrates utilized in Bio-PRB are a combination of rapid initiators, which are readily bioavailable, and long-lasting nutrients, which are more difficult to degrade. Herein, we investigated the effectiveness of three rapid initiators and three long-lasting nutrients to remove sulfate from simulated mine-contaminated groundwater via simulated column experiments. The rapid initiators comprised crude glycerol, sodium acetate, and industrial syrup (IS), and the long-lasting nutrients included biodiesel emulsified oil, soybean oil emulsified oil, and high-carbon alcohol emulsified oil (HO). Microorganisms were stimulated using IS to create a sulfate reduction system owing to its high total organic carbon content (24.30 g L-1), achieving optimal sulfate removal rate (1.69 mmol dm-3 d-1). The fastest (2.93 mmol dm-3 d-1) and highest (88%) sulfate removal rates were achieved using HO, which is probably associated with the ability of HO to provide the most suitable C/N ratio (111.75) and induce the growth of sulfate-reducing bacteria (SRB) for substrate degradation. Conversely, a high concentration of sulfate reduction products inhibited SRB growth in the HO column. The addition of organic materials promoted SRB growth and various organic substrate-degrading bacteria. Furthermore, the competitive growth of methanogens (86.6%) may be responsible for the decrease in the relative abundance of SRB during the later stages of the experiment in the HO column.

2.
Environ Sci Pollut Res Int ; 30(26): 68191-68205, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37119495

RESUMEN

In response to Cd, Pb, and Cu pollution in acid mine drainage (AMD), a multigroup cellulose material (TCIS) containing thiol (-SH), carboxyl (-COOH), and imine (-C = N) groups was prepared through oxidation and grafting reactions. At pH 5, the maximum Cd(II), Pb(II), and Cu(II) adsorption performances of TCIS were 53.60, 120.6, and 36.01 mg/g, respectively. In the binary system, the interaction between metal ions was mainly inhibited by competitive adsorption. Cu(II) exhibited the most fierce inhibitory effect and had a relatively stable adsorption performance. In the ternary system, the adsorption order was Cu(II) > Cd(II) > Pb(II). In density functional theory (DFT) calculations, we combined the molecular electrostatic potentials, binding energies, differential charges, and total potentials to illustrate the competitive behavior of metal ions at different binding sites. Moreover, X-ray photoelectron spectroscopy (XPS) and DFT analysis revealed that the adsorption process of TCIS was dominated by the above functional groups, which caused competitive adsorption among Cd(II), Pb(II), and Cu(II).


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Cadmio/análisis , Adsorción , Celulosa , Conducta Competitiva , Plomo , Metales Pesados/química , Iones , Contaminantes Químicos del Agua/análisis
3.
Environ Technol ; 44(26): 3975-3987, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35549986

RESUMEN

After fermentation, activated sludge contains many acid-producing bacteria and their metabolites, which have a good reducing effect. Various active groups (e.g., hydroxyl, amino, carboxyl, and phosphate) on microbial cell surfaces can adsorb heavy metals through complexation or chelation, forming heavy metal precipitates and thereby reducing the toxicity of heavy metals. However, the effects and mechanisms of using sludge after anaerobic fermentation to remove Cr(VI) are unclear, such as the dominance of direct versus indirect biological reduction, the contribution of abiotic effects, and the influence of fermentation conditions. This paper compares Cr(VI) removal in fermented and unfermented sludges. After fermentation for 24 h, 99.9% of the Cr(VI) (50 mg/L) in anaerobic sludge was removed within 7 h, which was twice the rate in unfermented activated sludge. A series of comparative experiments demonstrated that Cr(VI) removal primarily occurred through biological effects (about 92%), which included biological reduction and biosorption. 16SrRNA gene sequencing revealed that Cr(VI) transformation primarily occurred through direct biological reduction, with the related genera being Trichococcus, Acetobacter, Aeromonas, and Tolumonas. Fourier-transform infrared (FTIR) spectroscopy results showed that the C = O and C-O functionalities on sludge were likely involved in the Cr(VI) conversion. Majority of the Cr(VI) in the system was reduced to Cr(III) and existed in the suspension, with a small amount deposited on the sludge surface. The X-ray photoelectron spectroscopy (XPS) results indicated that the majority of Cr was present as reduced Cr(III) on the sludge. These results demonstrate that after fermentation in an aqueous environment, activated sludge is an effective medium for the remediation of Cr(VI). These results are useful for designing a green and sustainable bioreduction system for the remediation of Cr(VI)-polluted water.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Fermentación , Anaerobiosis , Cromo/química , Adsorción
4.
Environ Technol ; 44(14): 2171-2183, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35019831

RESUMEN

ABSTRACTStrain NB-1, which can efficiently degrade nitrobenzene, was identified as Pseudomonas frederiksbergensis. NB-1 was resistant to cold and alkali with the widest temperature (4-35 °C) and pH (5-11) adaptive range, compared with other reported nitrobenzene-degrading microorganisms. Based on the Haldane-Andrews model, the real maximum specific growth rate µm', specific affinity aA, and inhibition coefficient Ki were used in response surface methodology (RSM) simultaneously for the first time to guide NB-1 to treat nitrobenzene wastewater. According to the RSM model, the environmental factors (temperature, pH, salinity) corresponding to the optimal values of µm', aA, and Ki were determined. By comparing the specific growth rates corresponding to the optimal values of µm', aA, and Ki, respectively, the optimum growth conditions of NB-1 were determined under different nitrobenzene concentrations. The study of µm', aA, and Ki by RSM provided a new approach for a more accurate optimization of biological wastewater treatment conditions.


Asunto(s)
Bacterias , Salinidad , Temperatura , Cinética , Biodegradación Ambiental , Bacterias/metabolismo , Nitrobencenos/metabolismo , Pseudomonas/metabolismo , Aguas Residuales , Concentración de Iones de Hidrógeno
5.
Environ Pollut ; 300: 118921, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104561

RESUMEN

In recent years, biochar has become of considerable interest for environmental applications, it can be used as a catalyst for sulfides reduction of perchloroethylene, but the crucial role of biochar properties played in catalyzing dechlorination remained ambiguous investigation. To pinpoint the critical functional groups, the modified biochars were respectively produced by HNO3, KOH and H2O2 with similar dimensional structures but different functional groups. Combined with the adsorption and catalytic results of different biochars, the acid-modified biochar had the best catalytic performance (99.9% removal) due to the outstanding specific surface area and ample functional groups. According to characterization and DFT results, carboxyl and pyridine nitrogen exhibited a positive correlation with the catalytic rate, indicating that their contribution to catalytic performance. Customizing biochar with specific functional groups removed depth demonstrated that the carboxyl was essential component. Further, alkaline condition was conducive to catalytic reduction, while tetrachloroethylene cannot be reduced under acidic conditions, because HS- and S2- mainly existed in alkaline environment and the sulfur-containing nucleophilic structure formed with biochar was more stable under this condition. Overall, this study opens new perspectives for in situ remediation by biochar in chlorinated olefin polluted anoxic environment and promotes our insight of modifying for biochar catalyst design.


Asunto(s)
Tetracloroetileno , Adsorción , Carbón Orgánico/química , Peróxido de Hidrógeno , Sulfuros
6.
Molecules ; 26(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34641597

RESUMEN

Ubiquitous occurrences of phthalic acid esters (PAEs) or phthalates in a variety of consumer products have been demonstrated. Nevertheless, studies on their occurrence in various types of bottled drinks are limited. In this study, fifteen PAEs were analyzed in six categories of bottled drinks (n = 105) collected from the Chinese market, including mineral water, tea drinks, energy drinks, juice drinks, soft drinks, and beer. Among the 15 PAEs measured, DEHP was the most abundant phthalate with concentrations ranging from below the limit of quantification (LOQ) to 41,000 ng/L at a detection rate (DR) of 96%, followed by DIBP (DR: 88%) and DBP (DR: 84%) with respective concentration ranges of below LOQ to 16,000 and to 4900 ng/L. At least one PAE was detected in each drink sample, and the sum concentrations of 15 PAEs ranged from 770 to 48,004 ng/L (median: 6286 ng/L). Significant differences with respect to both PAE concentrations and composition profiles were observed between different types of bottled drinks. The median sum concentration of 15 PAEs in soft drinks was over five times higher than that detected in mineral water; different from other drink types. Besides DEHP, DBIP, and DBP, a high concentration of BMEP was also detected in a tea drink. The estimated daily dietary intake of phthalates (EDIdrink) through the consumption of bottled drinks was calculated based on the concentrations measured and the daily ingestion rates of bottled drink items. The EDIdrink values for DMP, DEP, DIBP, DBP, BMEP, DAP, BEEP, BBP, DCP, DHP, BMPP, BBEP, DEHP, DOP, and DNP through the consumption of bottled mineral water (based on mean concentrations) were 0.45, 0.33, 12.5, 3.67, 2.10, 0.06, 0.32, 0.16, 0.10, 0.09, 0.05, 0.81, 112, 0.13, and 0.20 ng/kg-bw/d, respectively, for Chinese adults. Overall, the EDIdrink values calculated for phthalates through the consumption of bottled drinks were below the oral reference doses suggested by the United States Environmental Protection Agency (U.S. EPA).


Asunto(s)
Bebidas/análisis , Exposición Dietética/análisis , Ácidos Ftálicos/análisis , China , Cromatografía de Gases , Ingestión de Líquidos , Disruptores Endocrinos/análisis , Ésteres/análisis , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA