Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 4340, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619347

RESUMEN

Analysing pig class II mayor histocompatibility complex (MHC) molecules is mainly related to antigen presentation. Identifying frequently-occurring alleles in pig populations is an important aspect to be considered when developing peptide-based vaccines. Colombian creole pig populations have had to adapt to local conditions since entering Colombia; a recent census has shown low amounts of pigs which is why they are considered protected by the Colombian government. Commercial hybrids are more attractive regarding production. This research has been aimed at describing the allele distribution of Colombian pigs from diverse genetic backgrounds and comparing Colombian SLA-DRB1 locus diversity to that of internationally reported populations. Twenty SLA-DRB1 alleles were identified in the six populations analysed here using sequence-based typing. The amount of alleles ranged from six (Manta and Casco Mula) to nine (San Pedreño). Only one allele (01:02) having > 5% frequency was shared by all three commercial line populations. Allele 02:01:01 was shared by five populations (around > 5% frequency). Global FST indicated that pig populations were clearly structured, as 20.6% of total allele frequency variation was explained by differences between populations (FST = 0.206). This study's results confirmed that the greatest diversity occurred in wild boars, thereby contrasting with low diversity in domestic pig populations.


Asunto(s)
Variación Genética , Genética de Población , Antígenos de Histocompatibilidad Clase II/genética , Alelos , Animales , Cruzamiento , Colombia , Frecuencia de los Genes , Haplotipos , Filogenia , Filogeografía , Sus scrofa/genética , Porcinos
2.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562650

RESUMEN

Plasmodium parasites' invasion of their target cells is a complex, multi-step process involving many protein-protein interactions. Little is known about how complex the interaction with target cells is in Plasmodium vivax and few surface molecules related to reticulocytes' adhesion have been described to date. Natural selection, functional and structural analysis were carried out on the previously described vaccine candidate P. vivax merozoite surface protein 10 (PvMSP10) for evaluating its role during initial contact with target cells. It has been shown here that the recombinant carboxyl terminal region (rPvMSP10-C) bound to adult human reticulocytes but not to normocytes, as validated by two different protein-cell interaction assays. Particularly interesting was the fact that two 20-residue-long regions (388DKEECRCRANYMPDDSVDYF407 and 415KDCSKENGNCDVNAECSIDK434) were able to inhibit rPvMSP10-C binding to reticulocytes and rosette formation using enriched target cells. These peptides were derived from PvMSP10 epidermal growth factor (EGF)-like domains (precisely, from a well-defined electrostatic zone) and consisted of regions having the potential of being B- or T-cell epitopes. These findings provide evidence, for the first time, about the fragments governing PvMSP10 binding to its target cells, thus highlighting the importance of studying them for inclusion in a P. vivax antimalarial vaccine.


Asunto(s)
Antígenos de Protozoos/metabolismo , Plasmodium vivax/metabolismo , Proteínas Protozoarias/metabolismo , Reticulocitos/parasitología , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Sitios de Unión/genética , Secuencia Conservada , Epítopos/química , Epítopos/genética , Epítopos/metabolismo , Genes Protozoarios , Humanos , Técnicas In Vitro , Malaria Vivax/sangre , Malaria Vivax/parasitología , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Plasmodium vivax/genética , Plasmodium vivax/patogenicidad , Dominios Proteicos/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reticulocitos/metabolismo , Electricidad Estática
3.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33450807

RESUMEN

Apical membrane antigen 1 is a microneme protein which plays an indispensable role during Apicomplexa parasite invasion. The detailed mechanism of AMA-1 molecular interaction with its receptor on bovine erythrocytes has not been completely defined in Babesia bovis. This study was focused on identifying the minimum B. bovis AMA-1-derived regions governing specific and high-affinity binding to its target cells. Different approaches were used for detecting ama-1 locus genetic variability and natural selection signatures. The binding properties of twelve highly conserved 20-residue-long peptides were evaluated using a sensitive and specific binding assay based on radio-iodination. B. bovis AMA-1 ectodomain structure was modelled and refined using molecular modelling software. NetMHCIIpan software was used for calculating B- and T-cell epitopes. The B. bovis ama-1 gene had regions under functional constraint, having the highest negative selective pressure intensity in the Domain I encoding region. Interestingly, B. bovis AMA-1-DI (100YMQKFDIPRNHGSGIYVDLG119 and 120GYESVGSKSYRMPVGKCPVV139) and DII (302CPMHPVRDAIFGKWSGGSCV321)-derived peptides had high specificity interaction with erythrocytes and bound to a chymotrypsin and neuraminidase-treatment sensitive receptor. DI-derived peptides appear to be exposed on the protein's surface and contain predicted B- and T-cell epitopes. These findings provide data (for the first-time) concerning B. bovis AMA-1 functional subunits which are important for establishing receptor-ligand interactions which could be used in synthetic vaccine development.


Asunto(s)
Eritrocitos/metabolismo , Ligandos , Receptores de Superficie Celular/metabolismo , Animales , Bovinos , Eritrocitos/inmunología , Modelos Moleculares , Conformación Molecular , Péptidos/química , Péptidos/inmunología , Péptidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores de Superficie Celular/química , Receptores de Superficie Celular/inmunología , Relación Estructura-Actividad
4.
Front Genet ; 10: 1293, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998362

RESUMEN

Bovine leukocyte antigens (BoLA) have been used as disease markers and immunological traits in cattle due to their primary role in pathogen recognition by the immune system. A higher MHC allele diversity in a population will allow presenting a broader peptide repertoire. However, loss of overall diversity due to domestication process can decrease a population's peptide repertoire. Within the context of zebu and taurine cattle populations, BoLA-DRB3 genetic diversity in Spanish Morucha and Colombian Normande cattle was analyzed and an approach to estimate functional diversity was performed. Sequence-based typing was used for identifying 29, 23, 27, and 28 alleles in Spanish Morucha, Nariño-, Boyacá-, and Cundinamarca-Normande cattle, respectively. These breeds had remarkably low heterozygosity levels and the Hardy-Weinberg principle revealed significant heterozygote deficiency. FST and DA genetic distance showed that Colombian Normande populations had greater variability than other phenotypically homogeneous breeds, such as Holstein. It was also found that Spanish Morucha cattle were strongly differentiated from other cattle breeds. Spanish Morucha had greater divergence in the peptide-binding region regarding other cattle breeds. However, peptide-binding region covariation indicated that the potential peptide repertoire seemed equivalent among cattle breeds. Despite the genetic divergence observed, the extent of the potential peptide repertoire in the cattle populations studied appears to be similar and thus their pathogen recognition potential should be equivalent, suggesting that functional diversity might persist in the face of bottlenecks imposed by domestication and breeding.

5.
PLoS One ; 13(9): e0203715, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30199554

RESUMEN

Malaria is an infectious disease caused by parasites from the genus Plasmodium (P. falciparum and P. vivax are responsible for 90% of all clinical cases); it is widely distributed throughout the world's tropical and subtropical regions. The P. vivax Pv12 protein is involved in invasion, is expressed on merozoite surface and has been recognised by antibodies from individuals exposed to the disease. In this study, B- and T-cell epitopes from Pv12 were predicted and characterised to advance in the design of a peptide-based vaccine against malaria. For evaluating the humoral response of individuals exposed to natural P. vivax infection from two endemic areas in Colombia, BepiPred-1.0 software was used for selecting B-cell epitopes. B-cell epitope 39038 displayed the greatest recognition by naturally-acquired antibodies and induced an IgG2/IgG4 response. NetMHCIIpan-3.1 prediction software was used for selecting peptides having high affinity binding for HLA-DRß1* allele lineages and this was confirmed by in-vitro binding assays. T-epitopes 39113 and 39117 triggered a memory T-cell response (Stimulation Index≥2) and significant cytokine production. Combining in-silico, in-vitro and functional assays, two Pv12 protein regions (containing peptides 39038, 39040, 39113 and 39117) have thus been characterised as promising vaccine candidates against P. vivax malaria.


Asunto(s)
Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Cadenas beta de HLA-DR/inmunología , Plasmodium vivax/inmunología , Colombia/epidemiología , Biología Computacional , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunidad Humoral
6.
Malar J ; 17(1): 270, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-30016987

RESUMEN

BACKGROUND: Plasmodium vivax is the most widespread malarial species, causing significant morbidity worldwide. Knowledge is limited regarding the molecular mechanism of invasion due to the lack of a continuous in vitro culture system for these species. Since protein-protein and host-cell interactions play an essential role in the microorganism's invasion and replication, elucidating protein function during invasion is critical when developing more effective control methods. Nucleic acid programmable protein array (NAPPA) has thus become a suitable technology for studying protein-protein and host-protein interactions since producing proteins through the in vitro transcription/translation (IVTT) method overcomes most of the drawbacks encountered to date, such as heterologous protein production, stability and purification. RESULTS: Twenty P. vivax proteins on merozoite surface or in secretory organelles were selected and successfully cloned using gateway technology. Most constructs were displayed in the array expressed in situ, using the IVTT method. The Pv12 protein was used as bait for evaluating array functionality and co-expressed with P. vivax cDNA display in the array. It was found that Pv12 interacted with Pv41 (as previously described), as well as PvMSP142kDa, PvRBP1a, PvMSP8 and PvRAP1. CONCLUSIONS: NAPPA is a high-performance technique enabling co-expression of bait and query in situ, thereby enabling interactions to be analysed rapidly and reproducibly. It offers a fresh alternative for studying protein-protein and ligand-receptor interactions regarding a parasite which is difficult to cultivate (i.e. P. vivax).


Asunto(s)
Plasmodium vivax/metabolismo , Análisis por Matrices de Proteínas/métodos , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Proteínas Protozoarias/metabolismo , Merozoítos/metabolismo
7.
PLoS One ; 12(10): e0186149, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29016666

RESUMEN

Recurrent pregnancy loss is a frequently occurring human infertility-related disease affecting ~1% of women. It has been estimated that the cause remains unexplained in >50% cases which strongly suggests that genetic factors may contribute towards the phenotype. Concerning its molecular aetiology numerous studies have had limited success in identifying the disease's genetic causes. This might have been due to the fact that hundreds of genes are involved in each physiological step necessary for guaranteeing reproductive success in mammals. In such scenario, next generation sequencing provides a potentially interesting tool for research into recurrent pregnancy loss causative mutations. The present study involved whole-exome sequencing and an innovative bioinformatics analysis, for the first time, in 49 unrelated women affected by recurrent pregnancy loss. We identified 27 coding variants (22 genes) potentially related to the phenotype (41% of patients). The affected genes, which were enriched by potentially deleterious sequence variants, belonged to distinct molecular cascades playing key roles in implantation/pregnancy biology. Using a quantum chemical approach method we established that mutations in MMP-10 and FGA proteins led to substantial energetic modifications suggesting an impact on their functions and/or stability. The next generation sequencing and bioinformatics approaches presented here represent an efficient way to find mutations, having potentially moderate/strong functional effects, associated with recurrent pregnancy loss aetiology. We consider that some of these variants (and genes) represent probable future biomarkers for recurrent pregnancy loss.


Asunto(s)
Aborto Habitual/genética , Exoma , Fibrinógeno/genética , Metaloproteinasa 10 de la Matriz/genética , Mutación , Fragmentos de Péptidos/genética , Aborto Habitual/diagnóstico , Aborto Habitual/metabolismo , Aborto Habitual/fisiopatología , Adulto , Biología Computacional , Femenino , Fibrinógeno/química , Fibrinógeno/metabolismo , Expresión Génica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metaloproteinasa 10 de la Matriz/química , Metaloproteinasa 10 de la Matriz/metabolismo , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fenotipo , Embarazo , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Teoría Cuántica , Termodinámica
8.
Hum Reprod ; 32(7): 1512-1520, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28505269

RESUMEN

STUDY QUESTION: Is it possible to identify new mutations potentially associated with non-syndromic primary ovarian insufficiency (POI) via whole-exome sequencing (WES)? SUMMARY ANSWER: WES is an efficient tool to study genetic causes of POI as we have identified new mutations, some of which lead to protein destablization potentially contributing to the disease etiology. WHAT IS KNOWN ALREADY: POI is a frequently occurring complex pathology leading to infertility. Mutations in only few candidate genes, mainly identified by Sanger sequencing, have been definitively related to the pathogenesis of the disease. STUDY DESIGN, SIZE, DURATION: This is a retrospective cohort study performed on 69 women affected by POI. PARTICIPANTS/MATERIALS, SETTING, METHODS: WES and an innovative bioinformatics analysis were used on non-synonymous sequence variants in a subset of 420 selected POI candidate genes. Mutations in BMPR1B and GREM1 were modeled by using fragment molecular orbital analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Fifty-five coding variants in 49 genes potentially related to POI were identified in 33 out of 69 patients (48%). These genes participate in key biological processes in the ovary, such as meiosis, follicular development, granulosa cell differentiation/proliferation and ovulation. The presence of at least two mutations in distinct genes in 42% of the patients argued in favor of a polygenic nature of POI. LIMITATIONS, REASONS FOR CAUTION: It is possible that regulatory regions, not analyzed in the present study, carry further variants related to POI. WIDER IMPLICATIONS OF THE FINDINGS: WES and the in silico analyses presented here represent an efficient approach for mapping variants associated with POI etiology. Sequence variants presented here represents potential future genetic biomarkers. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the Universidad del Rosario and Colciencias (Grants CS/CIGGUR-ABN062-2016 and 672-2014). Colciencias supported Liliana Catherine Patiño´s work (Fellowship: 617, 2013). The authors declare no conflict of interest.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Predisposición Genética a la Enfermedad , Péptidos y Proteínas de Señalización Intercelular/genética , Modelos Moleculares , Mutación , Insuficiencia Ovárica Primaria/genética , Adulto , Sustitución de Aminoácidos , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/química , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Estudios de Cohortes , Biología Computacional , Sistemas Especialistas , Femenino , Francia , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Simulación de Dinámica Molecular , Polimorfismo de Nucleótido Simple , Insuficiencia Ovárica Primaria/metabolismo , Estabilidad Proteica , Derivación y Consulta , Estudios Retrospectivos , Secuenciación del Exoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...