Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 52(19): 3332-45, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23594148

RESUMEN

As the endoplasmic reticulum (ER) is the compartment where disulfide bridges in secreted and cell surface proteins are formed, the disturbance of its redox state has profound consequences, yet regulation of ER redox potential remains poorly understood. To monitor the ER redox state in live cells, several fluorescence-based sensors have been developed. However, these sensors have yielded results that are inconsistent with each other and with earlier non-fluorescence-based studies. One particular green fluorescent protein (GFP)-based redox sensor, roGFP1-iL, could detect oxidizing changes in the ER despite having a reduction potential significantly lower than that previously reported for the ER. We have confirmed these observations and determined the mechanisms by which roGFP1-iL detects oxidizing changes. First, glutathione mediates the formation of disulfide-bonded roGFP1-iL dimers with an intermediate excitation fluorescence spectrum resembling a mixture of oxidized and reduced monomers. Second, glutathione facilitates dimerization of roGFP1-iL, which shifted the equilibrium from oxidized monomers to dimers, thereby increasing the molecule's reduction potential compared with that of a dithiol redox buffer. We conclude that the glutathione redox couple in the ER significantly increased the reduction potential of roGFP1-iL in vivo by facilitating its dimerization while preserving its ratiometric nature, which makes it suitable for monitoring oxidizing and reducing changes in the ER with a high degree of reliability in real time. The ability of roGFP1-iL to detect both oxidizing and reducing changes in ER and its dynamic response in glutathione redox buffer between approximately -190 and -130 mV in vitro suggests a range of ER redox potentials consistent with those determined by earlier approaches that did not involve fluorescent sensors.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Células 3T3-L1 , Animales , Retículo Endoplásmico/metabolismo , Glutatión/metabolismo , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Modelos Moleculares , Oxidación-Reducción , Ingeniería de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Espectrometría de Fluorescencia
2.
J Lipid Res ; 53(12): 2797-805, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22911046

RESUMEN

Primary adipocyte isolation by collagenase digestion is a widely used technique to study metabolic regulation and insulin action in adipocytes. However, induction of a proinflammatory response characterized by enhanced secretion of interleukin (IL)-6 has been tightly linked to the isolation process itself. To test the hypothesis that the shaking mechanical force exerted on adipocytes stimulates inflammation during isolation, rat primary adipocytes were prepared by collagenase digestion in orbital shaking incubators maintained at varying speeds. Contrary to expectation, the isolation-induced release of IL-6 was attenuated by increasing the rotational speed of digestion and the concentration of collagenase, both of which resulted in rapid dissociation of adipocytes from the vasculature. In addition, the attenuation of IL-6 secretion was associated with decreased phosphorylation of the stress-related p38 mitogen-activated protein kinase (p38 MAPK) and preserved insulin action. The data suggest that optimization of parameters including, but not limited to, mincing technique, time of digestion, and collagenase concentration will make it possible to isolate primary adipocytes without activation of a proinflammatory response leading to elevated secretion of IL-6.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo/citología , Artefactos , Separación Celular/métodos , Interleucina-6/metabolismo , Animales , Insulina/metabolismo , Masculino , Fosforilación , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA