Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 251(Pt 2): 118770, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518913

RESUMEN

Multifunctional nanoparticles (NPs) production from phytochemicals is a sustainable process and an eco-friendly method, and this technique has a variety of uses. To accomplish this, we developed zinc oxide nanoparticles (ZnONPs) using the medicinal plant Tinospora cordifolia (TC). Instruments such as UV-Vis, XRD, FTIR, FE-SEM with EDX, and high-resolution TEM were applied to characterize the biosynthesized TC-ZnONPs. According to the UV-vis spectra, the synthesized TC-ZnONPs absorb at a wavelength centered at 374 nm, which corresponds to a 3.2 eV band gap. HRTEM was used to observe the morphology of the particle surface and the actual size of the nanostructures. TC-ZnONPs mostly exhibit the shapes of rectangles and triangles with a median size of 21 nm. The XRD data of the synthesized ZnONPs exhibited a number of peaks in the 2θ range, implying their crystalline nature. TC-ZnONPs proved remarkable free radical scavenging capacity on DPPH (2,2-Diphenyl-1-picrylhydrazyl), ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), and NO (Nitric Oxide). TC-ZnONPs exhibited dynamic anti-bacterial activity through the formation of inhibition zones against Pseudomonas aeruginosa (18 ± 1.5 mm), Escherichia coli (18 ± 1.0 mm), Bacillus cereus (19 ± 0.5 mm), and Staphylococcus aureus (13 ± 1.1 mm). Additionally, when exposed to sunlight, TC-ZnONPs show excellent photocatalytic ability towards the degradation of methylene blue (MB) dye. These findings suggest that TC-ZnONPs are potential antioxidant, antibacterial, and photocatalytic agents.


Asunto(s)
Antibacterianos , Antioxidantes , Tecnología Química Verde , Óxido de Zinc , Antibacterianos/farmacología , Antibacterianos/química , Óxido de Zinc/química , Antioxidantes/química , Antioxidantes/farmacología , Tecnología Química Verde/métodos , Catálisis , Nanopartículas del Metal/química , Nanopartículas/química
2.
Mol Phylogenet Evol ; 130: 35-44, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30273757

RESUMEN

The pathogenicity of "Vibriosis" in shrimps imposes prominent menace to the sustainable growth of mariculture economy. Often the disease outbreak is associated speciously with Vibrio harveyi and its closely related species. The present study investigated the complete genome of the strain V. harveyi RT-6 to explore the molecular mechanism of pathogenesis. The genome of V. harveyi possesses a single chromosome of 6,374,398 bp in size, G + C content (44.7%) and 5730 protein coding genes. The reads of 1.3 Gb were retained from Illumina Hiseq 2500 sequencing method, assembled into 5912 predicted genes, 114 tRNAs genes, and 11 rRNAs genes. Unigenes were annotated by matching against Clusters of Orthologous Groups of proteins (COG)-5730, Gene ontology (GO)-1088, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases-3401. Furthermore, 13 insertion sequences-(IS), virulence factors and prophage regions were also identified. A total of 94 pathogenic genes and 36 virulence factor genes were mainly identified using Virulence Factors Database (VFDB). Out of the 36 virulence factors, 23 genes responsible for encoding flagella-based motility protein were exclusively predicted to take part in pathogenic mechanism. The Whole Genome Sequencing (WGS) of the strain RT-6 (accession number: SRR5410471) highlighted the underlying genes and specifically accountable functional genes that were responsible for pathogenic infections in shrimps.


Asunto(s)
Genoma Bacteriano/genética , Filogenia , Vibrio/genética , Animales , Composición de Base , Elementos Transponibles de ADN/genética , Ontología de Genes , Genómica , Penaeidae/microbiología , Vibrio/clasificación , Vibrio/patogenicidad , Vibrio/fisiología , Factores de Virulencia/genética
3.
Microb Pathog ; 113: 372-377, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29133276

RESUMEN

OBJECTIVES: This study aimed to sequence the whole genome of Vibrio campbellii RT-1 strain. METHODS: V. campbellii strain was isolated from an infected shrimp, Litopenaeus vannamei collected from aquaculture ponds, India (12.1899° N, 79.9249° E). The whole genome sequencing (WGS) was performed using the Illumina Hiseq 2500 platform and assembled de novo using SPAdes and Velvet optimiser. Furthermore, the gene prediction and annotation were performed by a rapid prokaryotic genome tool-Prokka. RESULTS: The genome of V. campbellii RT-1 strain has one circular chromosome with 6327218 bp long. V. campbellii RT-1 strain contains 5787 predicted genes with an average of 45% GC content. A total of 86 known genes associated with pathogenicity were identified and 28 genes were found to be responsible for virulence factors. Furthermore, 1112 unigenes were subjected to Gene Ontology (GO) terms, and 4895 predicted proteins were annotated with Clusters of orthologous (COGs) functional groups. CONCLUSIONS: The phylogenetic position of V. campbellii RT-1 strain was established through whole genome sequencing and genomic tools which provides a strong platform to further study on genomic alterations and phenotype of V. campbellii.


Asunto(s)
Penaeidae/microbiología , Vibriosis/veterinaria , Vibrio/clasificación , Vibrio/genética , Vibrio/aislamiento & purificación , Animales , Acuicultura , Composición de Base , Cromosomas Bacterianos , ADN Bacteriano/análisis , Genes Bacterianos/genética , Tamaño del Genoma , India , Anotación de Secuencia Molecular , Filogenia , Especificidad de la Especie , Vibrio/patogenicidad , Vibriosis/microbiología , Factores de Virulencia/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA