Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 14(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38132591

RESUMEN

Recently, we found that the spongy moth Lymantria dispar L. is susceptible to infection by a Dendrolimus sibiricus cytoplasmic polyhedrosis virus (DsCPV-1). In the present study, we evaluated the pathogenicity of DsCPV-1 against L. dispar larvae and its impact on surviving insects after the infection. Offspring of virally challenged insects were tested for susceptibility to a stress factor (starvation). In addition, we used light microscopy and quantitative polymerase chain reaction (qPCR) to test the ability of DsCPV-1 to be transmitted vertically. We found insect mortality of the L. dispar parents following the infection was positively associated with DsCPV-1 dose. DsCPV-1 was lethal to second-instar L. dispar larvae with a 50% lethal dose (LD50) of 1687 occlusion bodies per larva. No vertical transmission of DsCPV-1 to offspring larvae was detected, while the majority of insect deaths among offspring larvae were caused by microsporidia (Vairimorpha lymantriae), which was harbored by the parents. The offspring of virally challenged parents exhibited a higher number of detected microsporidia compared to the control. Our findings suggest that the application of DsCPV-1 is effective in controlling pests in terms of transgenerational impact following virus exposure.

2.
Insects ; 14(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36975961

RESUMEN

The spongy moth, Lymatria dispar, is a classic example of an invasive pest accidentally introduced from Europe to North America, where it has become one of the most serious forest defoliators, as in its native range. The present study was aimed at (i) identifying the current northern limit of L. dispar's Eurasian range and exploring its northward expansion in Canada using pheromone trap data, and (ii) comparing northern Eurasian populations with those from central and southern regions with respect to male flight phenology, the sums of effective temperatures (SETs) above the 7 °C threshold necessary for development to the adult stage, and heat availability. We show that the range of L. dispar in Eurasia now reaches the 61st parallel, and comparisons with historical data identify the average speed of spread as 50 km/year. We also document the northern progression of L. dispar in southern Canada, where the actual northern boundary of its range remains to be identified. We show that the median date of male flight does not vary greatly between northern and southern regions of the spongy moth range in Eurasia despite climate differences. Synchronization of flight at different latitudes of the range is associated with an acceleration of larval development in northern Eurasian populations. Similar changes in developmental rate along a latitudinal gradient have not been documented for North American populations. Thus, we argue that this feature of spongy moths from northern Eurasia poses a significant invasive threat to North America in terms of enhanced risks for rapid northward range expansion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA