Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(9)2023 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-37761952

RESUMEN

The Hessian fly (HF) is an invasive insect that has caused millions of dollars in yield losses to southeastern US wheat farms. Genetic resistance is the most sustainable solution to control HF. However, emerging biotypes are quickly overcoming resistance genes in the southeast; therefore, identifying novel sources of resistance is critical. The resistant line "UGA 111729" and susceptible variety "AGS 2038" were crossbred to generate a population of 225 recombinant inbred lines. This population was phenotyped in the growth chamber (GC) during 2019 and 2021 and in field (F) trials in Georgia during the 2021-2022 growing seasons. Visual scoring was utilized in GC studies. The percentage of infested tillers and number of pupae/larvae per tiller, and infested tiller per sample were measured in studies from 2021 to 2022. Averaging across all traits, a major QTL on chromosome 3D explained 42.27% (GC) and 10.43% (F) phenotypic variance within 9.86 centimorgans (cM). SNP marker IWB65911 was associated with the quantitative trait locus (QTL) peak with logarithm of odds (LOD) values of 14.98 (F) and 62.22 (GC). IWB65911 colocalized with resistance gene H32. KASP marker validation verified that UGA 111729 and KS89WGRC06 express H32. IWB65911 may be used for marker-assisted selection.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Animales , Triticum/genética , Estaciones del Año , Granjas , Hibridación Genética
2.
Front Genet ; 13: 1032601, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685944

RESUMEN

Wheat is the most important source of food, feed, and nutrition for humans and livestock around the world. The expanding population has increasing demands for various wheat products with different quality attributes requiring the development of wheat cultivars that fulfills specific demands of end-users including millers and bakers in the international market. Therefore, wheat breeding programs continually strive to meet these quality standards by screening their improved breeding lines every year. However, the direct measurement of various end-use quality traits such as milling and baking qualities requires a large quantity of grain, traits-specific expensive instruments, time, and an expert workforce which limits the screening process. With the advancement of sequencing technologies, the study of the entire plant genome is possible, and genetic mapping techniques such as quantitative trait locus mapping and genome-wide association studies have enabled researchers to identify loci/genes associated with various end-use quality traits in wheat. Modern breeding techniques such as marker-assisted selection and genomic selection allow the utilization of these genomic resources for the prediction of quality attributes with high accuracy and efficiency which speeds up crop improvement and cultivar development endeavors. In addition, the candidate gene approach through functional as well as comparative genomics has facilitated the translation of the genomic information from several crop species including wild relatives to wheat. This review discusses the various end-use quality traits of wheat, their genetic control mechanisms, the use of genetics and genomics approaches for their improvement, and future challenges and opportunities for wheat breeding.

3.
BMC Plant Biol ; 21(1): 490, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696717

RESUMEN

BACKGROUND: Quinoa (Chenopodium quinoa) is a high-value grain known for its excellent nutritional balance. It is an allotetraploid species (AABB, 2n = 4x = 36) formed by the hybridization between AA and BB genome diploid (2n = 2x = 18) species. This study reports genetic studies in Chenopodium ficifolium as a potential B genome diploid model system to simplify the genetic studies of quinoa including gene identification and marker-assisted breeding. RESULTS: Portsmouth, New Hampshire and Quebec City, Quebec accessions of C. ficifolium were used to develop an F2 population segregating for agronomically relevant traits including flowering time, plant height, the number of branches, branch angle, and internode length. Marker-trait associations were identified for the FLOWERING LOCUS T-LIKE 1 (FTL1) marker gene, where the alternate alleles (A1/A2) were segregating among the F2 generation plants in association with flowering time, plant height, and the number of branches. There was a strong correlation of the flowering time trait with both plant height and the number of branches. Thus, a possible multifaceted functional role for FTL1 may be considered. The parental Portsmouth and Quebec City accessions were homozygous for the alternate FTL1 alleles, which were found to be substantially diverged. SNPs were identified in the FTL1 coding sequence that could have some functional significance in relation to the observed trait variation. CONCLUSION: These results draw further attention to the possible functional roles of the FTL1 locus in Chenopodium and justify continued exploration of C. ficifolium as a potential diploid model system for the genetic study of quinoa. We expect our findings to aid in quinoa breeding as well as to any studies related to the Chenopodium genus.


Asunto(s)
Chenopodium quinoa/anatomía & histología , Chenopodium quinoa/crecimiento & desarrollo , Chenopodium quinoa/genética , Productos Agrícolas/genética , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Flores/genética , Fitomejoramiento/métodos , Diploidia , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Marcadores Genéticos , Genoma de Planta , Hibridación Genética , New Hampshire , Mejoramiento de la Calidad , Quebec
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...