Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Parasitol ; 330: 110236, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38889668

RESUMEN

Four strains (SB-PR, SB-RS, SB-RD, and SB-RM) of Trypanosoma evansi (T. evansi) were used in this study. SB-PR is known to be trypanocide-sensitive, while the others are trypanocide-resistant to suramin, diminazene diaceturate, and melarsomine hydrochloride, respectively. SB-RS, SB-RD, and SB-RM are derivatives of a single field isolate of SB-PR. Trypanocide resistance will not only increase costs and decrease production efficiency but will also affect effective treatment strategies. Therefore, studies on this topic are important to avoid inefficient production and ineffective treatment. This paper aims to presents a comparative molecular characterization of the trypanocide-resistant strains compared to the parent population. Comparative molecular characterization of these strains based on a protein profile analysis performed with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), DNA fingerprinting of random amplified polymorphic DNA (RAPD), and the molecular characterization of expression-site-associated 6 (ESAG6), variant surface glycoprotein (VSG), and T. evansi adenosine transporter-1 (TevAT1) gene sequences. The results show three derived strains (SB-RS, SB-RD, and SB-RM) exhibit different banding patterns than SB-PR. According to the RAPD results, SB-RS and SB-RD are different strains with DNA fingerprint similarities of about 77.8 %, while the DNA fingerprint of SB-RM has a similarity of 44.4 % to SB-RS and SB-RD. No differences in VSG were found among the four strains; however, ESAG6 showed differences in both nucleotide and amino acid sequences, as well as in its secondary and 3D structure. In conclusion, all molecular analyses of the ESAG6 gene showed that SB-PR, SB-RS, SB-RD, and SB-RM are different strains. Furthermore, SB-PR, SB-RS, SB-RD, and SB-RM did not exhibit the TevAT1 gene, so the resistance mechanism was determined to be unrelated to that gene.

2.
J Parasitol ; 109(4): 436-444, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37646443

RESUMEN

Identifying a trypanosome isolate is generally based on morphological observations and molecular identification of one of the genes, usually internal transcribed spacer 1 and 2 of ribosomal DNA (ITS1 rDNA, ITS2 rDNA), a variant surface glycoprotein of Rode Trypanozoon antigen type 1.2 (VSG RoTat 1.2), or expression site-associated genes (ESAG). However, this identification is insufficient because these genes cannot distinguish organisms in the subgenus Trypanozoon to the species level. A molecular approach using at least 5 sets of primers is needed, namely, ITS1, ESAG6/7, MINI, RoTat 1.2, and ND5, for stratified selection to obtain more targeted and conclusive results. Using this method to analyze isolates from Indonesia provided unexpected results: 9 isolates previously identified as Trypanozoon were found to have the kDNA maxicircle gene. Nine isolates of Trypanosoma equiperdum were identified for the first time in Indonesia, isolated from bovine (cattle and buffaloes). The identification of T. equiperdum in the 9 isolates was confirmed by analysis of the nucleotide sequence identity of the nad5-kDNA maxicircle gene.


Asunto(s)
ADN de Cinetoplasto , Trypanosoma , Animales , Bovinos , Trypanosoma/genética , Búfalos , ADN Ribosómico , Expresión Génica
3.
Vet Med Int ; 2023: 4096258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743706

RESUMEN

Indonesia is known to be endemic for rabies in several areas, especially in Sumatra, Kalimantan, Sulawesi, and Flores Islands. Currently, vaccinating dogs has been shown to be the most cost-effective strategy for preventing rabies in humans. Postvaccination monitoring should be carried out to evaluate the success of vaccination by measuring antibody titers in serum of vaccinated dogs. Serological methods for monitoring rabies-specific antibody titers can be carried out using enzyme-linked immunosorbent assay (ELISA) methods as recommended by the World Organization for Animal Health (WOAH). Therefore, the development of the in-house ELISA (BukTi-Vet) that we have carried out in order to support postvaccination monitoring in dogs needs to be evaluated for its diagnostic performance compared to commercial ELISA kits. The diagnostic performance of each ELISA kit was evaluated using 111 known positive and 47 negative serums. Each known positive and negative serum will be tested using the three rabies ELISA kits used in this study. BukTi-Vet is an in-house ELISA for the detection of rabies-specific IgG antibodies that have been developed with sensitivity, specificity, and accuracy of 98.19%, 97.87%, and 98.1%, respectively. Based on the value of its positive and negative clinical utility index, BukTi-Vet is excellent for use in immunoassays directed for confirmatory (0.97) as well as screening (0.94) tests. BukTi-Vet shows a very good agreement with both Platelia II and RFFIT, so it is convincing to be further refined into a diagnostic kit. Tests of field sera from dogs vaccinated with various vaccines should be performed to provide more complete information on diagnostic performance. BukTi-Vet showed a very good agreement with RFFIT, while Pusvetma and Platelia II only showed good agreement. The average value of BukTi-Vet compatibility with RFFIT can reach 94%.

4.
Vet World ; 16(12): 2479-2487, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38328351

RESUMEN

Background and Aim: Some Indonesian islands, including Sumatra, Kalimantan, Sulawesi, Java, and East Nusa Tenggara, have endemic rabies. Rabies outbreaks in Bali began from 2008 to 2011 and continue to occur sporadically. This study aimed to study the molecular analysis and geographical distribution of Indonesian rabies virus (RABV) from 2016 to 2021 and compare to previous periods. Materials and Methods: Virus isolates from 2016 to 2021 were extracted from dog brains and sequenced at the nucleoprotein gene locus. They were compared with data sequences available in the GenBank database. Indonesian RABV from the previous three periods (before 1989, 1997-2003, and 2008-2010) was extracted from the GenBank database. The genetic diversity in this study was based on the N gene of Indonesian RABV. Results: Asian RABV, which is genetically close to the Indonesian virus, is a virus from China (ASIA-3 cluster) and from the Southeast Asia region, namely, virus isolates from Sarawak and Malaysia and some Cambodian isolates. Rabies virus, which was isolated from the Bali islands, was the new cluster first detected and published in Bali, Indonesia, in 2008, while RABV from West Sumatra Province, which was isolated from 2016 to 2021, was also considered a new cluster that is genetically distant from other clusters in Indonesia. Conclusion: The RABV in Indonesia is divided into five clusters. The isolates from West Sumatra Province from 2016 to 2021 were a new cluster genetically distant from other Indonesian viruses.

5.
J Vet Sci ; 22(6): e88, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34854270

RESUMEN

Toxoplasma gondii consists of three genotypes, namely genotype I, II and III. Based on its virulence, T. gondii can be divided into virulent and avirulent strains. This study intends to evaluate an alternative method for predicting T. gondii virulence using hierarchical cluster analysis based on complete coding sequences (CDS) of sag1, gra7 and rop18 genes. Dendrogram was constructed using UPGMA with a Kimura 80 nucleotide distance measurement. The results showed that the prediction errors of T. gondii virulence using sag1, gra7 and rop18 were 7.41%, 6.89% and 9.1%, respectively. Analysis based on CDS of gra7 and rop18 was able to differentiate avirulent strains into genotypes II and III, whereas sag1 failed to differentiate.


Asunto(s)
Toxoplasma , Virulencia , Antígenos de Protozoos/genética , Análisis por Conglomerados , Genotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Protozoarias/genética , Toxoplasma/genética , Toxoplasma/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...