Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37745542

RESUMEN

Allosteric cooperativity between ATP and substrates is a prominent characteristic of the cAMP-dependent catalytic (C) subunit of protein kinase A (PKA). Not only this long-range synergistic action is involved in substrate recognition and fidelity, but it is likely to regulate PKA association with regulatory subunits and other binding partners. To date, a complete understanding of the molecular determinants for this intramolecular mechanism is still lacking. Here, we used an integrated NMR-restrained molecular dynamics simulations and a Markov Model to characterize the free energy landscape and conformational transitions of the catalytic subunit of protein kinase A (PKA-C). We found that the apo-enzyme populates a broad free energy basin featuring a conformational ensemble of the active state of PKA-C (ground state) and other basins with lower populations (excited states). The first excited state corresponds to a previously characterized inactive state of PKA-C with the αC helix swinging outward. The second excited state displays a disrupted hydrophobic packing around the regulatory (R) spine, with a flipped configuration of the F100 and F102 residues at the tip of the αC-ß4 loop. To experimentally validate the second excited state, we mutated F100 into alanine and used NMR spectroscopy to characterize the binding thermodynamics and structural response of ATP and a prototypical peptide substrate. While the activity of PKA-CF100A toward a prototypical peptide substrate is unaltered and the enzyme retains its affinity for ATP and substrate, this mutation rearranges the αC-ß4 loop conformation interrupting the allosteric coupling between nucleotide and substrate. The highly conserved αC-ß4 loop emerges as a pivotal element able to modulate the synergistic binding between nucleotide and substrate and may affect PKA signalosome. These results may explain how insertion mutations within this motif affect drug sensitivity in other homologous kinases.

2.
Nat Chem Biol ; 17(4): 456-464, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33526892

RESUMEN

Cyclin-dependent kinases (CDKs) are the master regulators of the eukaryotic cell cycle. To become activated, CDKs require both regulatory phosphorylation and binding of a cognate cyclin subunit. We studied the activation process of the G1/S kinase Cdk2 in solution and developed a thermodynamic model that describes the allosteric coupling between regulatory phosphorylation, cyclin binding and inhibitor binding. The results explain why monomeric Cdk2 lacks activity despite sampling an active-like state, reveal that regulatory phosphorylation enhances allosteric coupling with the cyclin subunit and show that this coupling underlies differential recognition of Cdk2 and Cdk4 inhibitors. We identify an allosteric hub that has diverged between Cdk2 and Cdk4 and show that this hub controls the strength of allosteric coupling. The altered allosteric wiring of Cdk4 leads to compromised activity toward generic peptide substrates and comparative specialization toward its primary substrate retinoblastoma (RB).


Asunto(s)
Regulación Alostérica/fisiología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Sitio Alostérico/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Ciclina A/metabolismo , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Fosforilación/fisiología , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo
3.
J Biomol NMR ; 69(4): 237-243, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29164453

RESUMEN

In multidimensional solution NMR experiments, π pulses are used extensively for inversion and refocusing operations on 1H, 13C and 15N nuclei. Pulse miscalibration, off-resonance effects, and J-coupling evolution during π pulse execution result in severe signal losses that are exacerbated at high magnetic fields. Here, we report the implementation of a triply-compensated π pulse (G5) optimized for both inversion and refocusing in widely used 2- and 3-dimensional experiments. By replacing most of the hard π pulses, adiabatic or composite pulses on the 1H, 13C and 15N channels with G5 pulses, we obtained signal enhancements ranging from 80 to 240%. We anticipate that triply-compensated pulses will be crucial for improving the performance of multidimensional and multinuclear pulse sequences at ultra-high fields.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...