Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
Nat Commun ; 14(1): 8487, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135686

RESUMEN

To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1-11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely.


Asunto(s)
Lesiones Encefálicas , COVID-19 , Humanos , Estudios de Seguimiento , Citocinas , COVID-19/complicaciones , Sueroterapia para COVID-19 , Autoanticuerpos , Mediadores de Inflamación , Biomarcadores , Proteína Ácida Fibrilar de la Glía
3.
Front Immunol ; 14: 1151659, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275886

RESUMEN

Induction of a lasting protective immune response is dependent on presentation of epitopes to patrolling T cells through the HLA complex. While peptide:HLA (pHLA) complex affinity alone is widely exploited for epitope selection, we demonstrate that including the pHLA complex stability as a selection parameter can significantly reduce the high false discovery rate observed with predicted affinity. In this study, pHLA complex stability was measured on three common class I alleles and 1286 overlapping 9-mer peptides derived from the SARS-CoV-2 Spike protein. Peptides were pooled based on measured stability and predicted affinity. Strikingly, stability of the pHLA complex was shown to strongly select for immunogenic epitopes able to activate functional CD8+T cells. This result was observed across the three studied alleles and in both vaccinated and convalescent COVID-19 donors. Deconvolution of peptide pools showed that specific CD8+T cells recognized one or two dominant epitopes. Moreover, SARS-CoV-2 specific CD8+T cells were detected by tetramer-staining across multiple donors. In conclusion, we show that stability analysis of pHLA is a key factor for identifying immunogenic epitopes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Epítopos de Linfocito T , Linfocitos T CD8-positivos , Péptidos , Antígenos de Histocompatibilidad
5.
Viruses ; 14(5)2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35632761

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) not only affects the respiratory tract but also causes neurological symptoms such as loss of smell and taste, headache, fatigue or severe cerebrovascular complications. Using transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2), we investigated the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with SARS-CoV-2 variants, as well as after prior influenza A virus infection. Apart from Omicron, we found all variants to frequently spread to and within the CNS. Infection was restricted to neurons and appeared to spread from the olfactory bulb mainly in basally oriented regions in the brain and into the spinal cord, independent of ACE2 expression and without evidence of neuronal cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed, accompanied by apoptotic death of endothelial, microglial and immune cells, without their apparent infection. Microgliosis and immune cell apoptosis indicate a potential role of microglia for pathogenesis and viral effect in COVID-19 and the possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates and broadly support the investigation of agents with adequate penetration into relevant regions of the CNS.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Sistema Nervioso Central , Tropismo Viral , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/complicaciones , Sistema Nervioso Central/fisiopatología , Sistema Nervioso Central/virología , Humanos , Ratones , Ratones Transgénicos , SARS-CoV-2/genética , Síndrome Post Agudo de COVID-19
6.
PLoS Negl Trop Dis ; 16(2): e0010116, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143497

RESUMEN

BACKGROUND: Japanese encephalitis (JE) virus (JEV) remains a leading cause of neurological infection across Asia. The high lethality of disease and absence of effective therapies mean that standardised animal models will be crucial in developing therapeutics. However, published mouse models are heterogeneous. We performed a systematic review, meta-analysis and meta-regression of published JEV mouse experiments to investigate the variation in model parameters, assess homogeneity and test the relationship of key variables against mortality. METHODOLOGY/ PRINCIPAL FINDINGS: A PubMed search was performed up to August 2020. 1991 publications were identified, of which 127 met inclusion criteria, with data for 5026 individual mice across 487 experimental groups. Quality assessment was performed using a modified CAMARADES criteria and demonstrated incomplete reporting with a median quality score of 10/17. The pooled estimate of mortality in mice after JEV challenge was 64.7% (95% confidence interval 60.9 to 68.3) with substantial heterogeneity between experimental groups (I^2 70.1%, df 486). Using meta-regression to identify key moderators, a refined dataset was used to model outcome dependent on five variables: mouse age, mouse strain, virus strain, virus dose (in log10PFU) and route of inoculation. The final model reduced the heterogeneity substantially (I^2 38.9, df 265), explaining 54% of the variability. CONCLUSION/ SIGNIFICANCE: This is the first systematic review of mouse models of JEV infection. Better adherence to CAMARADES guidelines may reduce bias and variability of reporting. In particular, sample size calculations were notably absent. We report that mouse age, mouse strain, virus strain, virus dose and route of inoculation account for much, though not all, of the variation in mortality. This dataset is available for researchers to access and use as a guideline for JEV mouse experiments.


Asunto(s)
Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa/virología , Ratones , Animales , Virus de la Encefalitis Japonesa (Especie)/genética , Humanos , Ratones/virología
7.
BMC Infect Dis ; 21(1): 784, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34372788

RESUMEN

BACKGROUND: SARS-CoV-2 is frequently shed in the stool of patients hospitalised with COVID-19. The extent of faecal shedding of SARS-CoV-2 among individuals in the community, and its potential to contribute to spread of disease, is unknown. METHODS: In this prospective, observational cohort study among households in Liverpool, UK, participants underwent weekly nasal/throat swabbing to detect SARS-CoV-2 virus, over a 12-week period from enrolment starting July 2020. Participants that tested positive for SARS-CoV-2 were asked to provide a stool sample three and 14 days later. In addition, in October and November 2020, during a period of high community transmission, stool sampling was undertaken to determine the prevalence of SARS-CoV-2 faecal shedding among all study participants. SARS-CoV-2 RNA was detected using Real-Time PCR. RESULTS: A total of 434 participants from 176 households were enrolled. Eighteen participants (4.2%: 95% confidence interval [CI] 2.5-6.5%) tested positive for SARS-CoV-2 virus on nasal/throat swabs and of these, 3/17 (18%: 95% CI 4-43%) had SARS-CoV-2 detected in stool. Two of three participants demonstrated ongoing faecal shedding of SARS-CoV-2, without gastrointestinal symptoms, after testing negative for SARS-CoV-2 in respiratory samples. Among 165/434 participants without SARS-CoV-2 infection and who took part in the prevalence study, none had SARS-CoV-2 in stool. There was no demonstrable household transmission of SARS-CoV-2 among households containing a participant with faecal shedding. CONCLUSIONS: Faecal shedding of SARS-CoV-2 occurred among community participants with confirmed SARS-CoV-2 infection. However, during a period of high community transmission, faecal shedding of SARS-CoV-2 was not detected among participants without SARS-CoV-2 infection. It is unlikely that the faecal-oral route plays a significant role in household and community transmission of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Estudios de Cohortes , Humanos , Estudios Prospectivos , ARN Viral , Reino Unido/epidemiología , Esparcimiento de Virus
8.
J Infect Dis ; 224(8): 1305-1315, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34161567

RESUMEN

BACKGROUND: A notable feature of coronavirus disease 2019 (COVID-19) is that children are less susceptible to severe disease. Children are known to experience more infections with endemic human coronaviruses (HCoVs) compared to adults. Little is known whether HCoV infections lead to cross-reactive anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies. METHODS: We investigated the presence of cross-reactive anti-SARS-CoV-2 IgG antibodies to spike 1 (S1), S1-receptor-binding domain (S1-RBD), and nucleocapsid protein (NP) by enzyme-linked immunosorbent assays, and neutralizing activity by a SARS-CoV-2 pseudotyped virus neutralization assay, in prepandemic sera collected from children (n = 50) and adults (n = 45), and compared with serum samples from convalescent COVID-19 patients (n = 16). RESULTS: A significant proportion of children (up to 40%) had detectable cross-reactive antibodies to SARS-CoV-2 S1, S1-RBD, and NP antigens, and the anti-S1 and anti-S1-RBD antibody levels correlated with anti-HCoV-HKU1 and anti-HCoV-OC43 S1 antibody titers in prepandemic samples (P < .001). There were marked increases of anti-HCoV-HKU1 and - OC43 S1 (but not anti-NL63 and -229E S1-RBD) antibody titers in serum samples from convalescent COVID-19 patients (P < .001), indicating an activation of cross-reactive immunological memory to ß-coronavirus spike. CONCLUSIONS: We demonstrated cross-reactive anti-SARS-CoV-2 antibodies in prepandemic serum samples from children and young adults. Promoting this cross-reactive immunity and memory response derived from common HCoV may be an effective strategy against SARS-COV-2 and future novel coronaviruses.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , Inmunoglobulina G/sangre , SARS-CoV-2/inmunología , Adolescente , Adulto , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/virología , Niño , Preescolar , Convalecencia , Coronavirus Humano 229E/inmunología , Proteínas de la Envoltura de Coronavirus/inmunología , Coronavirus Humano OC43/inmunología , Reacciones Cruzadas , Ensayo de Inmunoadsorción Enzimática , Femenino , Células HEK293 , Humanos , Inmunoglobulina G/inmunología , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
9.
BMJ Open ; 11(3): e048317, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33737446

RESUMEN

INTRODUCTION: The emergence and rapid spread of COVID-19 have caused widespread and catastrophic public health and economic impact, requiring governments to restrict societal activity to reduce the spread of the disease. The role of household transmission in the population spread of SARS-CoV-2, and of host immunity in limiting transmission, is poorly understood. This paper describes a protocol for a prospective observational study of a cohort of households in Liverpool City Region, UK, which addresses the transmission of SARS-CoV-2 between household members and how immunological response to the infection changes over time. METHODS AND ANALYSIS: Households in the Liverpool City Region, in which members have not previously tested positive for SARS-CoV-2 with a nucleic acid amplification test, are followed up for an initial period of 12 weeks. Participants are asked to provide weekly self-throat and nasal swabs and record their activity and presence of symptoms. Incidence of infection and household secondary attack rates of COVID-19 are measured. Transmission of SARS-CoV-2 will be investigated against a range of demographic and behavioural variables. Blood and faecal samples are collected at several time points to evaluate immune responses to SARS-CoV-2 infection and prevalence and risk factors for faecal shedding of SARS-CoV-2, respectively. ETHICS AND DISSEMINATION: The study has received approval from the National Health Service Research Ethics Committee; REC Reference: 20/HRA/2297, IRAS Number: 283 464. Results will be disseminated through scientific conferences and peer-reviewed open access publications. A report of the findings will also be shared with participants. The study will quantify the scale and determinants of household transmission of SARS-CoV-2. Additionally, immunological responses before and during the different stages of infection will be analysed, adding to the understanding of the range of immunological response by infection severity.


Asunto(s)
COVID-19/epidemiología , COVID-19/inmunología , COVID-19/transmisión , Humanos , Estudios Observacionales como Asunto , Estudios Prospectivos , Proyectos de Investigación , Medicina Estatal , Reino Unido/epidemiología
10.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32887977

RESUMEN

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Asunto(s)
Antígenos Virales/inmunología , Betacoronavirus/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Epítopos de Linfocito T/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/patología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología , Reino Unido , Vacunas Virales/inmunología
11.
bioRxiv ; 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32577665

RESUMEN

COVID-19 is an ongoing global crisis in which the development of effective vaccines and therapeutics will depend critically on understanding the natural immunity to the virus, including the role of SARS-CoV-2-specific T cells. We have conducted a study of 42 patients following recovery from COVID-19, including 28 mild and 14 severe cases, comparing their T cell responses to those of 16 control donors. We assessed the immune memory of T cell responses using IFNγ based assays with overlapping peptides spanning SARS-CoV-2 apart from ORF1. We found the breadth, magnitude and frequency of memory T cell responses from COVID-19 were significantly higher in severe compared to mild COVID-19 cases, and this effect was most marked in response to spike, membrane, and ORF3a proteins. Total and spike-specific T cell responses correlated with the anti-Spike, anti-Receptor Binding Domain (RBD) as well as anti-Nucleoprotein (NP) endpoint antibody titre (p<0.001, <0.001 and =0.002). We identified 39 separate peptides containing CD4 + and/or CD8 + epitopes, which strikingly included six immunodominant epitope clusters targeted by T cells in many donors, including 3 clusters in spike (recognised by 29%, 24%, 18% donors), two in the membrane protein (M, 32%, 47%) and one in the nucleoprotein (Np, 35%). CD8+ responses were further defined for their HLA restriction, including B*4001-restricted T cells showing central memory and effector memory phenotype. In mild cases, higher frequencies of multi-cytokine producing M- and NP-specific CD8 + T cells than spike-specific CD8 + T cells were observed. They furthermore showed a higher ratio of SARS-CoV-2-specific CD8 + to CD4 + T cell responses. Immunodominant epitope clusters and peptides containing T cell epitopes identified in this study will provide critical tools to study the role of virus-specific T cells in control and resolution of SARS-CoV-2 infections. The identification of T cell specificity and functionality associated with milder disease, highlights the potential importance of including non-spike proteins within future COVID-19 vaccine design.

12.
Front Immunol ; 11: 517, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32269575

RESUMEN

Dengue virus (DENV, family Flaviviridae, genus Flavivirus) exists as four distinct serotypes. Generally, immunity after infection with one serotype is protective and lifelong, though exceptions have been described. However, secondary infection with a different serotype can result in more severe disease for a minority of patients. Host responses to the first DENV infection involve the development of both cross-reactive antibody and T cell responses, which, depending upon their precise balance, may mediate protection or enhance disease upon secondary infection with a different serotype. Abundant evidence now exists that responses elicited by DENV infection can cross-react with other members of the genus Flavivirus, particularly Zika virus (ZIKV). Cohort studies have shown that prior DENV immunity is associated with protection against Zika. Cross-reactive antibody responses may enhance infection with flaviviruses, which likely accounts for the cases of severe disease seen during secondary DENV infections. Data for T cell responses are contradictory, and even though cross-reactive T cell responses exist, their clinical significance is uncertain. Recent mouse experiments, however, show that cross-reactive T cells are capable of mediating protection against ZIKV. In this review, we summarize and discuss the evidence that T cell responses may, at least in part, explain the cross-protection seen against ZIKV from DENV infection, and that T cell antigens should therefore be included in putative Zika vaccines.


Asunto(s)
Virus del Dengue/fisiología , Dengue/inmunología , Linfocitos T/inmunología , Vacunas Virales/inmunología , Infección por el Virus Zika/inmunología , Virus Zika/fisiología , Animales , Anticuerpos Antivirales/metabolismo , Protección Cruzada , Reacciones Cruzadas , Humanos , Ratones
13.
Parasitology ; 145(13): 1758-1764, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29898796

RESUMEN

Outbreaks of Old World cutaneous leishmaniasis (CL) have significantly increased due to the conflicts in the Middle East, with most of the cases occurring in resource-limited areas such as refugee settlements. The standard methods of diagnosis include microscopy and parasite culture, which have several limitations. To address the growing need for a CL diagnostic that can be field applicable, we have identified five candidate neoglycoproteins (NGPs): Galα (NGP3B), Galα(1,3)Galα (NGP17B), Galα(1,3)Galß (NGP9B), Galα(1,6)[Galα(1,2)]Galß (NGP11B), and Galα(1,3)Galß(1,4)Glcß (NGP1B) that are differentially recognized in sera from individuals with Leishmania major infection as compared with sera from heterologous controls. These candidates contain terminal, non-reducing α-galactopyranosyl (α-Gal) residues, which are known potent immunogens to humans. Logistic regression models found that NGP3B retained the best diagnostic potential (area under the curve from receiver-operating characteristic curve = 0.8). Our data add to the growing body of work demonstrating the exploitability of the human anti-α-Gal response in CL diagnosis.


Asunto(s)
Anticuerpos Antihelmínticos/aislamiento & purificación , Antígenos Helmínticos/aislamiento & purificación , Glicoproteínas/química , Leishmaniasis Cutánea/diagnóstico , Adolescente , Adulto , Animales , Área Bajo la Curva , Bancos de Muestras Biológicas , Epítopos/inmunología , Femenino , Humanos , Leishmania major , Masculino , Persona de Mediana Edad , Medio Oriente , Análisis de Regresión , Adulto Joven
14.
Lancet Infect Dis ; 18(6): 640-649, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29650424

RESUMEN

BACKGROUND: Scale-up of insecticide-based interventions has averted more than 500 million malaria cases since 2000. Increasing insecticide resistance could herald a rebound in disease and mortality. We aimed to investigate whether insecticide resistance was associated with loss of effectiveness of long-lasting insecticidal nets and increased malaria disease burden. METHODS: This WHO-coordinated, prospective, observational cohort study was done at 279 clusters (villages or groups of villages in which phenotypic resistance was measurable) in Benin, Cameroon, India, Kenya, and Sudan. Pyrethroid long-lasting insecticidal nets were the principal form of malaria vector control in all study areas; in Sudan this approach was supplemented by indoor residual spraying. Cohorts of children from randomly selected households in each cluster were recruited and followed up by community health workers to measure incidence of clinical malaria and prevalence of infection. Mosquitoes were assessed for susceptibility to pyrethroids using the standard WHO bioassay test. Country-specific results were combined using meta-analysis. FINDINGS: Between June 2, 2012, and Nov 4, 2016, 40 000 children were enrolled and assessed for clinical incidence during 1·4 million follow-up visits. 80 000 mosquitoes were assessed for insecticide resistance. Long-lasting insecticidal net users had lower infection prevalence (adjusted odds ratio [OR] 0·63, 95% CI 0·51-0·78) and disease incidence (adjusted rate ratio [RR] 0·62, 0·41-0·94) than did non-users across a range of resistance levels. We found no evidence of an association between insecticide resistance and infection prevalence (adjusted OR 0·86, 0·70-1·06) or incidence (adjusted RR 0·89, 0·72-1·10). Users of nets, although significantly better protected than non-users, were nevertheless subject to high malaria infection risk (ranging from an average incidence in net users of 0·023, [95% CI 0·016-0·033] per person-year in India, to 0·80 [0·65-0·97] per person year in Kenya; and an average infection prevalence in net users of 0·8% [0·5-1·3] in India to an average infection prevalence of 50·8% [43·4-58·2] in Benin). INTERPRETATION: Irrespective of resistance, populations in malaria endemic areas should continue to use long-lasting insecticidal nets to reduce their risk of infection. As nets provide only partial protection, the development of additional vector control tools should be prioritised to reduce the unacceptably high malaria burden. FUNDING: Bill & Melinda Gates Foundation, UK Medical Research Council, and UK Department for International Development.


Asunto(s)
Culicidae , Mosquiteros Tratados con Insecticida , Malaria , Control de Mosquitos , Mosquitos Vectores , Piretrinas , Adolescente , Animales , Niño , Preescolar , Humanos , Lactante , África del Sur del Sahara/epidemiología , Estudios de Cohortes , Culicidae/efectos de los fármacos , India/epidemiología , Resistencia a los Insecticidas , Internacionalidad , Malaria/epidemiología , Malaria/transmisión , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Estudios Prospectivos , Piretrinas/farmacología , Organización Mundial de la Salud
15.
Parasit Vectors ; 11(1): 122, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29499751

RESUMEN

BACKGROUND: Long-lasting insecticidal nets (LLINs) (with pyrethroids) and indoor residual spraying (IRS) are the cornerstones of the Sudanese malaria control program. Insecticide resistance to the principal insecticides in LLINs and IRS is a major concern. This study was designed to monitor insecticide resistance in Anopheles arabiensis from 140 clusters in four malaria-endemic areas of Sudan from 2011 to 2014. All clusters received LLINs, while half (n = 70), distributed across the four regions, had additional IRS campaigns. METHODS: Anopheles gambiae (s.l.) mosquitoes were identified to species level using PCR techniques. Standard WHO insecticide susceptibility bioassays were carried out to detect resistance to deltamethrin (0.05%), DDT (4%) and bendiocarb (0.1%). TaqMan assays were performed on random samples of deltamethrin-resistant phenotyped and pyrethrum spray collected individuals to determine Vgsc-1014 knockdown resistance mutations. RESULTS: Anopheles arabiensis accounted for 99.9% of any anopheline species collected across all sites. Bioassay screening indicated that mosquitoes remained susceptible to bendiocarb but were resistance to deltamethrin and DDT in all areas. There were significant increases in deltamethrin resistance over the four years, with overall mean percent mortality to deltamethrin declining from 81.0% (95% CI: 77.6-84.3%) in 2011 to 47.7% (95% CI: 43.5-51.8%) in 2014. The rate of increase in phenotypic deltamethrin-resistance was significantly slower in the LLIN + IRS arm than in the LLIN-only arm (Odds ratio 1.34; 95% CI: 1.02-1.77). The frequency of Vgsc-1014F mutation varied spatiotemporally with highest frequencies in Galabat (range 0.375-0.616) and New Halfa (range 0.241-0.447). Deltamethrin phenotypic-resistance correlated with Vgsc-1014F frequency. CONCLUSION: Combining LLIN and IRS, with different classes of insecticide, may delay pyrethroid resistance development, but the speed at which resistance develops may be area-specific. Continued monitoring is vital to ensure optimal management and control.


Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a los Insecticidas/genética , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores/efectos de los fármacos , Animales , Anopheles/genética , Bioensayo , Femenino , Mosquiteros Tratados con Insecticida , Insecticidas/farmacología , Malaria/epidemiología , Mosquitos Vectores/parasitología , Nitrilos/farmacología , Piretrinas/farmacología , Sudán/epidemiología
16.
FEBS J ; 285(5): 848-870, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29281179

RESUMEN

Transient regulation of Plasmodium numbers below the density that induces fever has been observed in chronic malaria infections in humans. This species transcending control cannot be explained by immunity alone. Using an in vitro system we have observed density dependent regulation of malaria population size as a mechanism to possibly explain these in vivo observations. Specifically, Plasmodium falciparum blood stages from a high but not low-density environment exhibited unique phenotypic changes during the late trophozoite (LT) and schizont stages of the intraerythrocytic cycle. These included in order of appearance: failure of schizonts to mature and merozoites to replicate, apoptotic-like morphological changes including shrinking, loss of mitochondrial membrane potential, and blebbing with eventual release of aberrant parasites from infected erythrocytes. This unique death phenotype was triggered in a stage-specific manner by sensing of a high-density culture environment. Conditions of glucose starvation, nutrient depletion, and high lactate could not induce the phenotype. A high-density culture environment induced rapid global changes in the parasite transcriptome including differential expression of genes involved in cell remodeling, clonal antigenic variation, metabolism, and cell death pathways including an apoptosis-associated metacaspase gene. This transcriptional profile was also characterized by concomitant expression of asexual and sexual stage-specific genes. The data show strong evidence to support our hypothesis that density sensing exists in P. falciparum. They indicate that an apoptotic-like mechanism may play a role in P. falciparum density regulation, which, as in yeast, has features quite distinguishable from mammalian apoptosis. DATABASE: Gene expression data are available in the GEO databases under the accession number GSE91188.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Malaria Falciparum/parasitología , Parasitemia/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Percepción de Quorum/genética , Transcripción Genética , Muerte Celular , Medios de Cultivo/farmacología , Medios de Cultivo Condicionados/farmacología , Eritrocitos/parasitología , Eritrocitos/ultraestructura , Ontología de Genes , Humanos , Técnicas In Vitro , Malaria Falciparum/sangre , Nutrientes/farmacología , Fenotipo , Plasmodium falciparum/citología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/genética
17.
Proc Natl Acad Sci U S A ; 114(52): E11267-E11275, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229808

RESUMEN

Insecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited. A cluster randomized trial was conducted in Sudan with pyrethroid-resistant and carbamate-susceptible malaria vectors. Clusters were randomly allocated to receive either long-lasting insecticidal nets (LLINs) alone or LLINs in combination with indoor residual spraying (IRS) with a pyrethroid (deltamethrin) insecticide in the first year and a carbamate (bendiocarb) insecticide in the two subsequent years. Malaria incidence was monitored for 3 y through active case detection in cohorts of children aged 1 to <10 y. When deltamethrin was used for IRS, incidence rates in the LLIN + IRS arm and the LLIN-only arm were similar, with the IRS providing no additional protection [incidence rate ratio (IRR) = 1.0 (95% confidence interval [CI]: 0.36-3.0; P = 0.96)]. When bendiocarb was used for IRS, there was some evidence of additional protection [interaction IRR = 0.55 (95% CI: 0.40-0.76; P < 0.001)]. In conclusion, pyrethroid resistance may have had an impact on pyrethroid-based IRS. The study was not designed to assess whether resistance had an impact on LLINs. These data alone should not be used as the basis for any policy change in vector control interventions.


Asunto(s)
Anopheles , Resistencia a Medicamentos , Insecticidas , Malaria Falciparum , Control de Mosquitos/economía , Nitrilos , Fenilcarbamatos , Piretrinas , Animales , Niño , Preescolar , Costos y Análisis de Costo , Femenino , Humanos , Incidencia , Insecticidas/economía , Insecticidas/farmacología , Malaria Falciparum/economía , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Masculino , Nitrilos/economía , Nitrilos/farmacología , Fenilcarbamatos/economía , Fenilcarbamatos/farmacología , Piretrinas/economía , Piretrinas/farmacología , Sudán/epidemiología
18.
PLoS Negl Trop Dis ; 11(10): e0006039, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29069089

RESUMEN

BACKGROUND: Protozoan parasites from the genus Leishmania cause broad clinical manifestations known as leishmaniases, which affect millions of people worldwide. Cutaneous leishmaniasis (CL), caused by L. major, is one the most common forms of the disease in the Old World. There is no preventive or therapeutic human vaccine available for L. major CL, and existing drug treatments are expensive, have toxic side effects, and resistant parasite strains have been reported. Hence, further therapeutic interventions against the disease are necessary. Terminal, non-reducing, and linear α-galactopyranosyl (α-Gal) epitopes are abundantly found on the plasma membrane glycolipids of L. major known as glycoinositolphospholipids. The absence of these α-Gal epitopes in human cells makes these glycans highly immunogenic and thus potential targets for vaccine development against CL. METHODOLOGY/PRINCIPAL FINDINGS: Here, we evaluated three neoglycoproteins (NGPs), containing synthetic α-Gal epitopes covalently attached to bovine serum albumin (BSA), as vaccine candidates against L. major, using α1,3-galactosyltransferase-knockout (α1,3GalT-KO) mice. These transgenic mice, similarly to humans, do not express nonreducing, linear α-Gal epitopes in their cells and are, therefore, capable of producing high levels of anti-α-Gal antibodies. We observed that Galα(1,6)Galß-BSA (NGP5B), but not Galα(1,4)Galß-BSA (NGP12B) or Galα(1,3)Galα-BSA (NGP17B), was able to significantly reduce the size of footpad lesions by 96% in comparison to control groups. Furthermore, we observed a robust humoral and cellular immune response with production of high levels of protective lytic anti-α-Gal antibodies and induction of Th1 cytokines. CONCLUSIONS/SIGNIFICANCE: We propose that NGP5B is an attractive candidate for the study of potential synthetic α-Gal-neoglycoprotein-based vaccines against L. major infection.


Asunto(s)
Galactósidos/inmunología , Glicoproteínas/inmunología , Leishmania major/inmunología , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Cutánea/inmunología , Animales , Biomarcadores , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Epítopos/inmunología , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Leishmaniasis Cutánea/prevención & control , Ratones , Ratones Noqueados
19.
Sci Rep ; 7(1): 5821, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28725028

RESUMEN

Insecticide resistance is typically associated with alterations to the insecticidal target-site or with gene expression variation at loci involved in insecticide detoxification. In some species copy number variation (CNV) of target site loci (e.g. the Ace-1 target site of carbamate insecticides) or detoxification genes has been implicated in the resistance phenotype. We show that field-collected Ugandan Culex quinquefasciatus display CNV for the voltage-gated sodium channel gene (Vgsc), target-site of pyrethroid and organochlorine insecticides. In order to develop field-applicable diagnostics for Vgsc CN, and as a prelude to investigating the possible association of CN with insecticide resistance, three assays were compared for their accuracy in CN estimation in this species. The gold standard method is droplet digital PCR (ddPCR), however, the hardware is prohibitively expensive for widespread utility. Here, ddPCR was compared to quantitative PCR (qPCR) and pyrosequencing. Across all platforms, CNV was detected in ≈10% of mosquitoes, corresponding to three or four copies (per diploid genome). ddPCR and qPCR-Std-curve yielded similar predictions for Vgsc CN, indicating that the qPCR protocol developed here can be applied as a diagnostic assay, facilitating monitoring of Vgsc CN in wild populations and the elucidation of association between the Vgsc CN and insecticide resistance.


Asunto(s)
Culex/genética , Variaciones en el Número de Copia de ADN/genética , Genes de Insecto , Canales de Sodio Activados por Voltaje/genética , Animales , Dosificación de Gen , Haplotipos/genética , Reproducibilidad de los Resultados
20.
Emerg Infect Dis ; 23(5): 758-764, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28418293

RESUMEN

Insecticide resistance might reduce the efficacy of malaria vector control. In 2013 and 2014, malaria vectors from 50 villages, of varying pyrethroid resistance, in western Kenya were assayed for resistance to deltamethrin. Long-lasting insecticide-treated nets (LLIN) were distributed to households at universal coverage. Children were recruited into 2 cohorts, cleared of malaria-causing parasites, and tested every 2 weeks for reinfection. Infection incidence rates for the 2 cohorts were 2.2 (95% CI 1.9-2.5) infections/person-year and 2.8 (95% CI 2.5-3.0) infections/person-year. LLIN users had lower infection rates than non-LLIN users in both low-resistance (rate ratio 0.61, 95% CI 0.42-0.88) and high-resistance (rate ratio 0.55, 95% CI 0.35-0.87) villages (p = 0.63). The association between insecticide resistance and infection incidence was not significant (p = 0.99). Although the incidence of infection was high among net users, LLINs provided significant protection (p = 0.01) against infection with malaria parasite regardless of vector insecticide resistance.


Asunto(s)
Resistencia a los Insecticidas , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria/epidemiología , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores , Animales , Niño , Preescolar , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Lactante , Insecticidas/farmacología , Kenia/epidemiología , Malaria/parasitología , Malaria/transmisión , Masculino , Control de Mosquitos/métodos , Mosquitos Vectores/parasitología , Vigilancia en Salud Pública
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...