Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 968, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29497073

RESUMEN

The originally published version of this Article contained errors in Fig. 4 that were introduced during the production process. In panel c, the two uppermost labels 'IgE spleen' and 'IgE BM' incorrectly read 'IgG1 spleen' and 'IgE1 BM', respectively. These errors have now been corrected in both the PDF and HTML versions of the Article.

2.
Nat Commun ; 8(1): 641, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28935935

RESUMEN

The unique differentiation of IgE cells suggests unconventional mechanisms of IgE memory. IgE germinal centre cells are transient, most IgE cells are plasma cells, and high affinity IgE is produced by the switching of IgG1 cells to IgE. Here we investigate the function of subsets of IgG1 memory B cells in IgE production and find that two subsets of IgG1 memory B cells, CD80+CD73+ and CD80-CD73-, contribute distinctively to the repertoires of high affinity pathogenic IgE and low affinity non-pathogenic IgE. Furthermore, repertoire analysis indicates that high affinity IgE and IgG1 plasma cells differentiate from rare CD80+CD73+ high affinity memory clones without undergoing further mutagenesis. By identifying the cellular origin of high affinity IgE and the clonal selection of high affinity memory B cells into the plasma cell fate, our findings provide fundamental insights into the pathogenesis of allergies, and on the mechanisms of antibody production in memory B cell responses.IgE is an important mediator of protective immunity as well as allergic reaction, but how high affinity IgE antibodies are produced in memory responses is not clear. Here the authors show that IgE can be generated via class-switch recombination in IgG1 memory B cells without additional somatic hypermutation.


Asunto(s)
Linfocitos B/inmunología , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Memoria Inmunológica/inmunología , 5'-Nucleotidasa/inmunología , 5'-Nucleotidasa/metabolismo , Animales , Linfocitos B/metabolismo , Antígeno B7-1/inmunología , Antígeno B7-1/metabolismo , Diferenciación Celular/inmunología , Células Cultivadas , Perfilación de la Expresión Génica/métodos , Hipersensibilidad/inmunología , Cambio de Clase de Inmunoglobulina/inmunología , Ratones Endogámicos BALB C , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Transcriptoma/inmunología
3.
Blood ; 130(18): 1995-2005, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28851698

RESUMEN

Many immune parameters show circadian rhythms during the 24-hour day in mammals. The most striking circadian oscillation is the number of circulating immune cells that display an opposite rhythm between humans and mice. The physiological roles and mechanisms of circadian variations in mouse leukocytes are well studied, whereas for humans they remain unclear because of the lack of a proper model. In this study, we found that consistent with their natural host species, mouse and human circulating leukocytes exhibited opposite circadian oscillations in humanized mice. This cyclic pattern of trafficking correlated well with the diurnal expression levels of C-X-C chemokine receptor 4, which were controlled by the intracellular hypoxia-inducible factor 1α/aryl hydrocarbon receptor nuclear translocator-like heterodimer. Furthermore, we also discovered that p38 mitogen-activated protein kinases/mitogen-activated 2 had opposite effects between mice and humans in generating intracellular reactive oxygen species, which subsequently regulated HIF-1α expression. In conclusion, we propose humanized mice as a robust model for human circadian studies and reveal insights on a novel molecular clock network in the human circadian rhythm.


Asunto(s)
Ritmo Circadiano/fisiología , Leucocitos/fisiología , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Movimiento Celular , Quimiocina CXCL12/metabolismo , Humanos , Síndrome Jet Lag/fisiopatología , Ratones , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo , Receptores CXCR4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Sci Rep ; 6: 30784, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27499025

RESUMEN

The production of IL-21 by T follicular helper (Tfh) cells is vital in driving the germinal centre reaction and high affinity antibody formation. However, the degree of Tfh cell heterogeneity and function is not fully understood. We used a novel IL-21eGFP reporter mouse strain to analyze the diversity and role of Tfh cells. Through the analysis of GFP expression in lymphoid organs of IL-21eGFP mice, we identified a subpopulation of GFP(+), high IL-21 producing Tfh cells present only in Peyer's Patches. GFP(+)Tfh cells were found to be polyclonal and related to GFP(-)Tfh cells of Peyer's Patches in TCR repertoire composition and overall gene expression. Studies on the mechanisms of induction of GFP(+)Tfh cells demonstrated that they required the intestinal microbiota and a diverse repertoire of CD4(+) T cells and B cells. Importantly, ablation of GFP(+) cells resulted in a reduced frequency of Peyer's Patches IgG1 and germinal center B cells in addition to small but significant shifts in gut microbiome composition. Our work highlights the diversity among IL-21 producing CD4(+) Tfh cells, and the interrelationship between the intestinal bacteria and Tfh cell responses in the gut.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Microbioma Gastrointestinal , Centro Germinal/inmunología , Interleucinas/genética , Ganglios Linfáticos Agregados/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Células Cultivadas , Centro Germinal/microbiología , Interleucinas/metabolismo , Ratones , Ratones Transgénicos , Ganglios Linfáticos Agregados/citología , Ganglios Linfáticos Agregados/microbiología , Bazo/citología , Bazo/inmunología
6.
Curr Top Microbiol Immunol ; 388: 1-19, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25553792

RESUMEN

The generation of long-lived plasma cells and memory B cells producing high-affinity antibodies depends on the maturation of B cell responses in germinal centers. These processes are essential for long-lasting antibody-mediated protection against infections. IgE antibodies are important for defense against parasites and toxins and can also mediate anti-tumor immunity. However, high-affinity IgE is also the main culprit responsible for the manifestations of allergic disease, including life-threatening anaphylaxisAnaphylaxis . Thus, generation of high-affinity IgE must be tightly regulated. Recent studies of IgE B cell biology have unveiled two mechanisms that limit high-affinity IgE memory responses: First, B cells that have recently switched to IgE production are programmed to rapidly differentiate into plasma cells,Plasma cells and second, IgE germinal centerGerminal center cells are transient and highly apoptotic. Opposing these processes, we now know that germinal center-derived IgG B cells can switch to IgE production, effectively becoming IgE-producing plasma cells. In this chapter, we will discuss the unique molecular and cellular pathways involved in the generation of IgE antibodies.


Asunto(s)
Diferenciación Celular , Inmunoglobulina E/biosíntesis , Memoria Inmunológica , Animales , Linfocitos B/inmunología , Humanos , Cambio de Clase de Inmunoglobulina , Inmunoglobulina E/genética
7.
J Exp Med ; 210(12): 2755-71, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24218137

RESUMEN

The mechanisms involved in the maintenance of memory IgE responses are poorly understood, and the role played by germinal center (GC) IgE(+) cells in memory responses is particularly unclear. IgE(+) B cell differentiation is characterized by a transient GC phase, a bias toward the plasma cell (PC) fate, and dependence on sequential switching for the production of high-affinity IgE. We show here that IgE(+) GC B cells are unfit to undergo the conventional GC differentiation program due to impaired B cell receptor function and increased apoptosis. IgE(+) GC cells fail to populate the GC light zone and are unable to contribute to the memory and long-lived PC compartments. Furthermore, we demonstrate that direct and sequential switching are linked to distinct B cell differentiation fates: direct switching generates IgE(+) GC cells, whereas sequential switching gives rise to IgE(+) PCs. We propose a comprehensive model for the generation and memory of IgE responses.


Asunto(s)
Linfocitos B/inmunología , Inmunoglobulina E/metabolismo , Memoria Inmunológica , Modelos Inmunológicos , Animales , Apoptosis , Linfocitos B/citología , Diferenciación Celular , Centro Germinal/citología , Centro Germinal/inmunología , Proteínas Fluorescentes Verdes/genética , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Nippostrongylus , Células Plasmáticas/citología , Células Plasmáticas/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Infecciones por Strongylida/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...