Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Recept Signal Transduct Res ; : 1-9, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39188145

RESUMEN

INTRODUCTION: Drug development for Alzheimer's disease has one of the greatest failure rates of any therapeutic field and AD is still incurable. Glycogen synthase kinase-3ß is a critical enzyme implicated in the pathogenesis of AD, particularly in the hyperphosphorylation of tau protein, which leads to the formation of neurofibrillary tangles. TNF-α also plays a significant role in the pathogenesis of Alzheimer's disease by promoting neuroinflammation, contributing to the formation of amyloid plaques and neurofibrillary tangles, impairing synaptic function, and disrupting the balance of neurotrophic factors. Phytomedicine has numerous advantages over synthetic medications, acting multiple mode of action, including being less toxic and having fewer adverse effects. Flavonoids act as a promising therapeutic target for treating Alzheimer's disease. The present work investigates the anti-AD potentials of 35 flavonoids for the inhibition of GSK-3ß and TNF-α. METHODS: The physicochemical, pharmacokinetic parameters, toxicity profile and drug-likeliness of the selected 35 flavonoids were predicted using SwissADME & OSIRIS data Warrier property explorer web tool. All flavonoids were selected for docking studies on GSK-3ß and TNF-α protein using Autodock 4.2.1. RESULTS: The predictions of this study suggested that among the selected 35 flavonoids, Top 3 flavonoids, such as Epicatechin gallate -10.93 kcal/mol, Fisetin -9.44 kcal/mol and Eriodictyol -8.54 kcal/mol for GSK-3ß targets. TNF-α Fisetin -11.52 kcal/mol, Sterubin -10.87 kcal/mol, Biochainin A -10.69 kcal/mol were compared with standard drug donepezil. CONCLUSION: Therefore, these flavonoids could be utilized as possible leads for the structure-based design in the advancement of new, strong Anti-Alzheimer's agents. However, more invitro and invivo analyses are required to finally confirm the outcomes of this research.

2.
Bioinformation ; 20(4): 327-336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854763

RESUMEN

Sterubin (7-O-Methyleriodicytol), a flavanone compound isolated from the leaves of Eriodicyton californicum and Eriodicyton angustifolium, has neuroprotective, anti-inflammatory, and antioxidant properties. Therefore, it is of interest to identify the potential targets for Alzheimer disease using network pharmacology. We report 25 overlapping targets among 100 potential targets of sterubin and 673 known targets of Alzheimer. APP, BACE-1, and AChE were among the ten hub targets enriched in biological processes and pathways relevant to Alzheimer's disease. Subsequent, molecular docking analysis shows that sterubin have optimal binding features with these hub gene targets for further consideration.

3.
Bioinformation ; 20(2): 103-109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38497082

RESUMEN

Flavonoids are promising therapeutics for the treatment of Alzheimer's disease (AD). Therefore, it is of interest to study the anti-AD potential of 35 flavonoids towards the inhibition of AchE and BACE-1. Hence, the physicochemical, pharmacokinetic parameters, toxicity risk and drug-likeliness of the selected 35 flavonoids were computed. Further, the molecular docking analysis of flavonoids with AChE and BACE-1 were completed. A binding energy of -10.42 kcal/mol Epicatechin gallate, -10.16 kcal/mol sterubin and -10.11 kcal/mol Fisetin was observed with AchE as potential inhibitors. Similarly, Biochainin-A -9.81kcal/mol, Sterubin -8.96 kcal/mol and Epicatechin gallate -7.4 7 kcal/mol showed with BACE-1. Thus, these flavonoids are potential leads for structure-based design of effective anti-Alzheimer's agents.

4.
J Complement Integr Med ; 20(3): 530-536, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35005853

RESUMEN

The most common human neurodegenerative diseases like Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) etc. have been recognized to result from a complex interplay between genetic predisposition and defective cellular dynamics such as inappropriate accumulation of unfolded proteins, oxygen free radicals and mitochondrial dysfunction. The treatment strategies available today for these neurodegenerative ailments are only palliative and are incapable of restraining the progression of the disease. Hence, there is an immense requirement for identification of drug candidates with the ability to alleviate neuronal damage along with controlling progression of the disease. From time immemorial mankind has been relying on plants for treating varied types of dreadful diseases. Among the various medicinal plants used for treating various neurological ailments, Celastrus paniculatus (CP) popularly known as Jyotishmati or Malkangni is well known in the Ayurveda system of Indian Traditional Medicine whose seeds and seed oil have been used for centuries in treating epilepsy, dementia, facial paralysis, amnesia, anxiety, sciatica, cognitive dysfunctions etc. This review apart from specifying the phytochemical characteristics and traditional uses of C. paniculatus seeds and seed oil also exemplify the comprehensive data derived from various research reports on their therapeutic potential against some common neurological disorders.

5.
Bioinformation ; 19(12): 1184-1192, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250532

RESUMEN

The use of a flavonoid compound sterubin in drug discovery is gaining momentum. Hence, it is of interest to document the molecular network analysis to docking of sterubin with potential targets to glean insights. We identified 32 target genes and (or) gene products for sterubin using DAVID tools for GO, KEGG pathway enrichment analyses and the STRING database. Further, molecular docking analysis data of sterubin with these targets is documented for further consideration in broad-spectrum drug discovery.

6.
Bioinformation ; 18(3): 134-140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518133

RESUMEN

Lupeol is one of the secondary metabolite (triterpenoid) present in many medicinally effective plants. It has numerous biological and pharmacological actions. Lupeol is found to have effective herbs and has immense biological activity against several diseases including its cytotoxic effect on cancer cells. In recent drug designing, molecular study of analysis is usually used for understanding the target and the ligand interaction. Therefore, it is of interest to document the molecular docking analysis data of lupeol with different cancer targets such as Caspase- 3, BCL-2, Topoisomerase, PTK, mTOR, H-Ras, PI3K, and AKT. These molecular docking studies were carried out by using AutoDock tools 4.2 version software. Molecular docking analyses of lupeol with target protein were found to have good dock score and minimum inhibition constant. BCL-2, Topoisomerase, PTK, mTOR and PI3Kdocking studies showed the best binding energy inhibition constant and ligand efficiency. The in-silico molecular docking analysis showed that the lupeol having relatively good docking energy, affinity and efficiency towards the active macromolecule, thus it may be considered as good inhibitor of proliferating cancer cells. By this knowledge of docking results, the lupeol can be used as promising drug for anticancer activity.

7.
Front Pharmacol ; 13: 993927, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188588

RESUMEN

Obsessive-compulsive disorder (OCD) is a chronic and complex psychiatric disorder that usually includes both obsessions and compulsions. Morinda citrifolia L. (Noni) is a functional food and it is a well-known plant due to its potential therapeutic effects on human health in many disorders including neurological and neurodegenerative diseases. The purpose of this study was to evaluate the potential effect of M. citrifolia fruits extract (MCFE) against obsessive-compulsive disorder using the marble burying and nestlet shredding behavior mice models. In addition, brain neurotransmitters such as dopamine (DA), serotonin and noradrenaline (NA) were also assessed. Five mice were placed in each of the different groups, and the treatment was given to the animals for a period of 15 days. The marble burying test was evaluated for 30 min on days 1, 7, and 14 while the nestlet shredding test was evaluated for 60 min on days 2, 8, and 15. Treatments with MCFE (100 and 200 mg/kg, p.o.) significantly improved in both behavior tasks when compared to the control group. In addition, diazepam (2 mg/kg, i.p.) and fluoxetine (15 mg/kg, p.o.) were also significantly improved in both tasks when compared with the control mice. Further locomotor activity study revealed that MCFE and fluoxetine did not affect the locomotor functions when compared to vehicle treated mice. In contrast, diazepam significantly decreased locomotion when compared to the control group. The significant amelioration of biogenic amines were observed in the MCFE-treated animals with increased serotonin levels. The histopathology of the brain, liver, and kidney tissues after MCFE administration revealed normal morphological structure with no signs of toxicity or abnormalities. All these results together suggest that MCFE can be a potential drug candidate for the treatment of OCD. Future research should focus on theidentification and the anti-compulsive activity of the constituents from M. citrifolia.

8.
Exp Biol Med (Maywood) ; 247(15): 1330-1334, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35894117

RESUMEN

Coronavirus disease 2019 (COVID-19) management has been challenging for patients with comorbidities. Patients with diabetes and COVID-19, in particular, have shown severe symptoms and rapid progression of the disease. They also have a high mortality rate compared to the non-diabetic population. The high mortality rate is caused in people with diabetes who are in a pro-inflammatory condition; this could worsen COVID-19. In addition, people with diabetes have circulatory issues and COVID-19 infection can lead to further clotting problems. It is critical to understand the mechanisms underlying the adverse clinical outcomes in patients with diabetes and COVID-19. This review discusses various disease conditions contributing to poor prognosis in diabetic COVID-19 patients such as hyperglycemia, insulin resistance, impaired pancreatic function, and production of advanced glycation end products.


Asunto(s)
COVID-19 , Diabetes Mellitus , Hiperglucemia , COVID-19/complicaciones , Comorbilidad , Diabetes Mellitus/epidemiología , Humanos , SARS-CoV-2
9.
Neurotoxicology ; 51: 172-83, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26522450

RESUMEN

Oxidative stress and inflammation are some of the contributing factors for dopaminergic neurodegeneration in Parkinson's disease (PD). Though Valeriana wallichii D.C. is known for its nervine activities its effect against PD is yet to be studied. This is the first report on the antioxidant and anti-inflammatory effect of V. wallichii rhizome extract (VWE) in MPTP induced PD mice. GC-MS analysis of VWE indicated the presence of phytoconstituents like isovaleric acid and acacetin. PD induced mice were treated orally with three different doses (50, 100 and 200mg/kg body weight (BW)) of VWE for 14 days and their behavioural changes were studied on days 0, 8, 13 and 21. The levels of striatal dopamine, mid brain tyrosine hydroxylase positive (TH(+)) cell count, TH protein expression, reactive oxygen species (ROS), lipid peroxidation (LPO), antioxidants and inflammatory cytokines were analysed. Mid brain glial fibrillary acidic protein (GFAP) expression was assessed by immunohistochemistry and western blotting. Also mid brain histopathological analysis was performed. VWE treatment significantly recuperated the altered behavioural test scores, striatal dopamine levels, mid brain TH(+) cell count and TH protein levels, increased GFAP expression and the histopathological changes observed in PD mice. Similarly, diminished levels of antioxidants, elevated levels of ROS, LPO and inflammatory cytokines were also significantly ameliorated following VWE treatment. The effective dose of VWE was found to be 200mg/kg BW. Conclusively, V. wallichii rhizome extract has the potential to mitigate oxidative stress and inflammatory damage in PD.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/prevención & control , Extractos Vegetales/administración & dosificación , Valeriana/química , Animales , Antioxidantes/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Encefalitis/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Mesencéfalo/patología , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Percepción Olfatoria/efectos de los fármacos , Trastornos Parkinsonianos/patología , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo , Rizoma/química , Olfato/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA