Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 19(8): e1011572, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37607182

RESUMEN

Pathogen life history theory assumes a positive relationship between pathogen load in host tissues and pathogen transmission. Empirical evidence for this relationship is surprisingly rare due to the difficulty of measuring transmission for many pathogens. The comparative method, where a common host is experimentally infected with a set of pathogen strains, is a powerful approach for investigating the relationships between pathogen load and transmission. The validity of such experimental estimates of strain-specific transmission is greatly enhanced if they can predict the pathogen population strain structure in nature. Borrelia burgdorferi is a multi-strain, tick-borne spirochete that causes Lyme disease in North America. This study used 11 field-collected strains of B. burgdorferi, a rodent host (Mus musculus, C3H/HeJ) and its tick vector (Ixodes scapularis) to determine the relationship between pathogen load in host tissues and lifetime host-to-tick transmission (HTT). Mice were experimentally infected via tick bite with 1 of 11 strains. Lifetime HTT was measured by infesting mice with I. scapularis larval ticks on 3 separate occasions. The prevalence and abundance of the strains in the mouse tissues and the ticks were determined by qPCR. We used published databases to obtain estimates of the frequencies of these strains in wild I. scapularis tick populations. Spirochete loads in ticks and lifetime HTT varied significantly among the 11 strains of B. burgdorferi. Strains with higher spirochete loads in the host tissues were more likely to infect feeding larval ticks, which molted into nymphal ticks that had a higher probability of B. burgdorferi infection (i.e., higher HTT). Our laboratory-based estimates of lifetime HTT were predictive of the frequencies of these strains in wild I. scapularis populations. For B. burgdorferi, the strains that establish high abundance in host tissues and that have high lifetime transmission are the strains that are most common in nature.


Asunto(s)
Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Animales , Ratones , Ratones Endogámicos C3H , Larva
2.
Microbiol Resour Announc ; 12(1): e0052122, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36472427

RESUMEN

Ignavigranum ruoffiae is a rare human pathogen. Strain CPL 242382-20 was isolated in Manitoba, Canada, from a breast cyst. Whole-genome sequencing was performed with the Oxford Nanopore Technologies MinION and Illumina MiSeq platforms. The circular chromosome is 1,949,382 bp with 39.68% G+C content and 1,765 protein-coding genes.

3.
Elife ; 112022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36346652

RESUMEN

Public health emergencies like SARS, MERS, and COVID-19 have prioritized surveillance of zoonotic coronaviruses, resulting in extensive genomic characterization of coronavirus diversity in bats. Sequencing viral genomes directly from animal specimens remains a laboratory challenge, however, and most bat coronaviruses have been characterized solely by PCR amplification of small regions from the best-conserved gene. This has resulted in limited phylogenetic resolution and left viral genetic factors relevant to threat assessment undescribed. In this study, we evaluated whether a technique called hybridization probe capture can achieve more extensive genome recovery from surveillance specimens. Using a custom panel of 20,000 probes, we captured and sequenced coronavirus genomic material in 21 swab specimens collected from bats in the Democratic Republic of the Congo. For 15 of these specimens, probe capture recovered more genome sequence than had been previously generated with standard amplicon sequencing protocols, providing a median 6.1-fold improvement (ranging up to 69.1-fold). Probe capture data also identified five novel alpha- and betacoronaviruses in these specimens, and their full genomes were recovered with additional deep sequencing. Based on these experiences, we discuss how probe capture could be effectively operationalized alongside other sequencing technologies for high-throughput, genomics-based discovery and surveillance of bat coronaviruses.


Asunto(s)
COVID-19 , Quirópteros , Animales , Filogenia , Variación Genética , Análisis de Secuencia de ADN , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Genómica
4.
Ecol Evol ; 11(24): 17572-17580, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35003623

RESUMEN

The COVID-19 pandemic prompted a transition to remote delivery of courses that lack immersive hands-on research experiences for undergraduate science students, resulting in a scientific research skills gap. In this report, we present an option for an inclusive and authentic, hands-on research experience that all students can perform off-campus. Biology students in a semester-long (13 weeks) sophomore plant physiology course participated in an at-home laboratory designed to study the impacts of nitrogen addition on growth rates and root nodulation by wild nitrogen-fixing Rhizobia in Pisum sativum (Pea) plants. This undergraduate research experience, piloted in the fall semester of 2020 in a class with 90 students, was created to help participants learn and practice scientific research skills during the COVID-19 pandemic. Specifically, the learning outcomes associated with this at-home research experience were: (1) generate a testable hypothesis, (2) design an experiment to test the hypothesis, (3) explain the importance of biological replication, (4) perform meaningful statistical analyses using R, and (5) compose a research paper to effectively communicate findings to a general biology audience. Students were provided with an at-home laboratory kit containing the required materials and reagents, which were chosen to be accessible and affordable in case students were unable to access our laboratory kit. Students were guided through all aspects of research, including hypothesis generation, data collection, and data analysis, with video tutorials and live virtual sessions. This at-home laboratory provided students an opportunity to practice hands-on research with the flexibility to collect and analyze their own data in a remote setting during the COVID-19 pandemic. This, or similar laboratories, could also be used as part of distance learning biology courses.

5.
Biodegradation ; 31(4-6): 407-422, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33150552

RESUMEN

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are environmental contaminants of concern. We previously described biodegradation of two PFAS that represent components and transformation products of aqueous film-forming foams (AFFF), 6:2 fluorotelomer sulfonamidoalkyl betaine (6:2 FTAB) and 6:2 fluorotelomer sulfonate (6:2 FTSA), by Gordonia sp. strain NB4-1Y. To identify genes involved in the breakdown of these compounds, the transcriptomic response of NB4-1Y was examined when grown on 6:2 FTAB, 6:2 FTSA, a non-fluorinated analog of 6:2 FTSA (1-octanesulfonate), or MgSO4, as sole sulfur source. Differentially expressed genes were identified as those with ± 1.5 log2-fold-differences (± 1.5 log2FD) in transcript abundances in pairwise comparisons. Transcriptomes of cells grown on 6:2 FTAB and 6:2 FTSA were most similar (7.9% of genes expressed ± 1.5 log2FD); however, several genes that were expressed in greater abundance in 6:2 FTAB treated cells compared to 6:2 FTSA treated cells were noted for their potential role in carbon-nitrogen bond cleavage in 6:2 FTAB. Responses to sulfur limitation were observed in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments, as 20 genes relating to global sulfate stress response were more highly expressed under these conditions compared to the MgSO4 treatment. More highly expressed oxygenase genes in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments were found to code for proteins with lower percent sulfur-containing amino acids compared to both the total proteome and to oxygenases showing decreased expression. This work identifies genetic targets for further characterization and will inform studies aimed at evaluating the biodegradation potential of environmental samples through applied genomics.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Betaína , Biodegradación Ambiental , Fluorocarburos/análisis , Azufre , Transcriptoma/genética , Contaminantes Químicos del Agua/análisis
6.
Microb Genom ; 6(11)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33151138

RESUMEN

The plant growth-promoting rhizobacterium Delftia acidovorans RAY209 is capable of establishing strong root attachment during early plant development at 7 days post-inoculation. The transcriptional response of RAY209 was measured using RNA-seq during early (day 2) and sustained (day 7) root colonization of canola plants, capturing RAY209 differentiation from a medium-suspended cell state to a strongly root-attached cell state. Transcriptomic data was collected in an identical manner during RAY209 interaction with soybean roots to explore the putative root colonization response to this globally relevant crop. Analysis indicated there is an increased number of significantly differentially expressed genes between medium-suspended and root-attached cells during early soybean root colonization relative to sustained colonization, while the opposite temporal pattern was observed for canola root colonization. Regardless of the plant host, root-attached RAY209 cells exhibited the least amount of differential gene expression between early and sustained root colonization. Root-attached cells of either canola or soybean roots expressed high levels of a fasciclin gene homolog encoding an adhesion protein, as well as genes encoding hydrolases, multiple biosynthetic processes, and membrane transport. Notably, while RAY209 ABC transporter genes of similar function were transcribed during attachment to either canola or soybean roots, several transporter genes were uniquely differentially expressed during colonization of the respective plant hosts. In turn, both canola and soybean plants expressed genes encoding pectin lyase and hydrolases - enzymes with purported function in remodelling extracellular matrices in response to RAY209 colonization. RAY209 exhibited both a core regulatory response and a planthost-specific regulatory response to root colonization, indicating that RAY209 specifically adjusts its cellular activities to adapt to the canola and soybean root environments. This transcriptomic data defines the basic RAY209 response as both a canola and soybean commercial crop and seed inoculant.


Asunto(s)
Adaptación Fisiológica/genética , Brassica napus/microbiología , Delftia acidovorans/genética , Glycine max/microbiología , Raíces de Plantas/microbiología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Brassica napus/crecimiento & desarrollo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Delftia acidovorans/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Desarrollo de la Planta , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Glycine max/crecimiento & desarrollo
7.
Nucleic Acids Res ; 46(18): 9684-9698, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29986115

RESUMEN

We present the first high-resolution determination of transcriptome architecture in the priority pathogen Acinetobacter baumannii. Pooled RNA from 16 laboratory conditions was used for differential RNA-seq (dRNA-seq) to identify 3731 transcriptional start sites (TSS) and 110 small RNAs, including the first identification in A. baumannii of sRNAs encoded at the 3' end of coding genes. Most sRNAs were conserved among sequenced A. baumannii genomes, but were only weakly conserved or absent in other Acinetobacter species. Single nucleotide mapping of TSS enabled prediction of -10 and -35 RNA polymerase binding sites and revealed an unprecedented base preference at position +2 that hints at an unrecognized transcriptional regulatory mechanism. To apply functional genomics to the problem of antimicrobial resistance, we dissected the transcriptional regulation of the drug efflux pump responsible for chloramphenicol resistance, craA. The two craA promoters were both down-regulated >1000-fold when cells were shifted to nutrient limited medium. This conditional down-regulation of craA expression renders cells sensitive to chloramphenicol, a highly effective antibiotic for the treatment of multidrug resistant infections. An online interface that facilitates open data access and visualization is provided as 'AcinetoCom' (http://bioinf.gen.tcd.ie/acinetocom/).


Asunto(s)
Acinetobacter baumannii/genética , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , ARN Bacteriano/genética , Transcriptoma/genética , Acinetobacter baumannii/efectos de los fármacos , Mapeo Cromosómico , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN/métodos
8.
Genome Announc ; 6(2)2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29326211

RESUMEN

Deinococcus sp. strain UR1, a resilient bacterium isolated from the surface of a stainless steel sign located on the University of Regina campus in Saskatchewan, Canada, was sequenced to 56-fold coverage to produce 73 contigs with a consensus length of 4,472,838 bp and a G+C content of 69.37%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...