Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Vet Med Assoc ; : 1-9, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39094622

RESUMEN

OBJECTIVE: Dogs with acute hemorrhagic diarrhea syndrome (AHDS) present with similar clinical signs and histopathological findings as dogs with parvovirosis, in which fecal microbiota transplantation (FMT) has led to a significantly faster resolution of diarrhea and shorter hospitalization times. We investigated whether FMT results in faster clinical improvement and normalization of the intestinal microbiome compared to standard treatment. ANIMALS: 32 client-owned dogs with AHDS. METHODS: A prospective, double-anonymized clinical trial included 3 groups: symptomatic treatment (n = 12), FMT treatment (FMTT; 12), and antibiotic treatment (AT; 8). Clinical improvement was determined on the basis of AHDS index, changes in the microbiome based on the dysbiosis index, and PCR results for clostridial strains. RESULTS: Overall, no significant differences in clinical scores between the treatment groups over time were detected except on day 2 (higher AHDS index in the AT group compared to FMTT group; P = .046). The dysbiosis index increased and P hiranonis decreased on day 1 in some dogs, but these changes were transient in the symptomatic treatment and FMTT groups. In the AT group, the dysbiosis index was persistently elevated and 4 of 8 dogs showed a reduced abundance of P hiranonis on day 42. In 67% of the dogs on day 1, NetF-encoding Clostridium perfringens was detected and enterotoxin-encoding strains increased, but these changes were transient in all dogs, regardless of therapy. CLINICAL RELEVANCE: Overall, in dogs with AHDS, neither FMT nor AT resulted in faster clinical improvement. In addition, C perfringens strains are self-limiting and do not require antibiotic therapy.

2.
Front Vet Sci ; 11: 1385469, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978633

RESUMEN

Introduction: Anxiety and cognitive dysfunction are frequent, difficult to treat and burdensome comorbidities in human and canine epilepsy. Fecal microbiota transplantation (FMT) has been shown to modulate behavior in rodent models by altering the gastrointestinal microbiota (GIM). This study aims to investigate the beneficial effects of FMT on behavioral comorbidities in a canine translational model of epilepsy. Methods: Nine dogs with drug-resistant epilepsy (DRE) and behavioral comorbidities were recruited. The fecal donor had epilepsy with unremarkable behavior, which exhibited a complete response to phenobarbital, resulting in it being seizure-free long term. FMTs were performed three times, two weeks apart, and the dogs had follow-up visits at three and six months after FMTs. Comprehensive behavioral analysis, including formerly validated questionnaires and behavioral tests for attention deficit hyperactivity disorder (ADHD)- and fear- and anxiety-like behavior, as well as cognitive dysfunction, were conducted, followed by objective computational analysis. Blood samples were taken for the analysis of antiseizure drug (ASD) concentrations, hematology, and biochemistry. Urine neurotransmitter concentrations were measured. Fecal samples were subjected to analysis using shallow DNA shotgun sequencing, real-time polymerase chain reaction (qPCR)-based Dysbiosis Index (DI) assessment, and short-chain fatty acid (SCFA) quantification. Results: Following FMT, the patients showed improvement in ADHD-like behavior, fear- and anxiety-like behavior, and quality of life. The excitatory neurotransmitters aspartate and glutamate were decreased, while the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and GABA/glutamate ratio were increased compared to baseline. Only minor taxonomic changes were observed, with a decrease in Firmicutes and a Blautia_A species, while a Ruminococcus species increased. Functional gene analysis, SCFA concentration, blood parameters, and ASD concentrations remained unchanged. Discussion: Behavioral comorbidities in canine IE could be alleviated by FMT. This study highlights FMT's potential as a novel approach to improving behavioral comorbidities and enhancing the quality of life in canine patients with epilepsy.

3.
Front Vet Sci ; 11: 1401592, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933703

RESUMEN

Feline chronic enteropathies (FCE) are common causes of chronic gastrointestinal signs in cats and include different diseases such as food-responsive enteropathy (FRE), inflammatory bowel diseases (IBD), and low-grade intestinal T-cell lymphoma (LGITL). Although changes in intestinal microbiota and fecal metabolites have been reported in dogs and humans with chronic enteropathy, research in cats has been limited. Therefore, this study aimed to evaluate the fecal microbiota and lipid-related fecal metabolites in cats with FCE to a clinically healthy comparison group (CG). A total of 34 cats with FCE (13 FRE, 15 IBD, and 6 LGITL) and 27 cats in the CG were enrolled in this study. The fecal microbiota was evaluated by the qPCR-based feline Dysbiosis Index (DI). The feline DI in cats with CE (median: 1.3, range: -2.4 to 3.8) was significantly higher (p < 0.0001) compared to CG (median: - 2.3, Range: -4.3 to 2.3), with no difference found among the FCE subgroups. The fecal abundances of Faecalibacterium (p < 0.0001), Bacteroides (p < 0.0001), Fusobacterium (p = 0.0398), Bifidobacterium (p = 0.0004), and total bacteria (p = 0.0337) significantly decreased in cats with FCE. Twenty-seven targeted metabolites were measured by gas chromatography-mass spectrometry, including long-chain fatty acids (LCFAs), sterols, and bile acids (BAs). Fecal concentrations of 5 of 12 LCFAs were significantly increased in cats with FCE compared to CG. Fecal concentrations of zoosterol (p = 0.0109), such as cholesterol (p < 0.001) were also significantly increased in cats with FCE, but those of phytosterols were significantly decreased in this group. No differences in fecal BAs were found between the groups. Although no differences were found between the four groups, the fecal metabolomic pattern of cats with FRE was more similar to that of the CG than to those with IBD or LGITL. This could be explained by the mild changes associated with FRE compared to IBD and LGITL. The study showed changes in intestinal microbiota and alteration of fecal metabolites in FCE cats compared to the CG. Changes in fecal lipids metabolites suggest a dysmetabolism of lipids, including LCFAs, sterols, and unconjugated BAs in cats with CE.

4.
Vet Sci ; 11(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38787169

RESUMEN

The usefulness of antibiotics in dogs with acute diarrhea (AD) is controversial. It is also unclear what effect metronidazole has on potential enteropathogens such as Clostridium perfringens and Escherichia coli. Thus, the aim of this study was to evaluate the effect of metronidazole vs. a synbiotic on the clinical course and core intestinal bacteria of dogs with AD. Twenty-seven dogs with AD were enrolled in this prospective, randomized, blinded clinical trial and treated with either metronidazole (METg) or a synbiotic (SYNg; E. faecium DSM 10663; NCIMB 10415/4b170). The Canine Acute Diarrhea Severity (CADS) index was recorded daily for eleven days. Bacteria were quantified using qPCR. Data were analyzed using mixed models with repeated measures. A higher concentration of E. coli was observed in the METg group vs. the SYNg group on Day 6 (p < 0.0001) and Day 30 (p = 0.01). Metronidazole had no effect on C. perfringens. C. hiranonis was significantly lower in the METg group than in the SYNg group on Days 6 and 30 (p < 0.0001; p = 0.0015). No significant differences were observed in CADS index, fecal consistency, or defecation frequency between treatment groups (except for the CADS index on one single day). In conclusion, metronidazole negatively impacts the microbiome without affecting clinical outcomes. Thus, synbiotics might be a preferred treatment option for dogs with AD.

5.
J Vet Intern Med ; 38(3): 1425-1436, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38613431

RESUMEN

BACKGROUND: Fecal microbiota transplantation (FMT) is increasingly used for gastrointestinal and extra-gastrointestinal diseases in veterinary medicine. However, its effects on immune responses and possible adverse events have not been systematically investigated. HYPOTHESIS/OBJECTIVES: Determine the short-term safety profile and changes in the peripheral immune system after a single FMT administration in healthy dogs. ANIMALS: Ten client-owned, clinically healthy dogs as FMT recipients, and 2 client-owned clinically healthy dogs as FMT donors. METHODS: Prospective non-randomized clinical trial. A single rectal enema of 5 g/kg was given to clinically healthy canine recipients. During the 28 days after FMT administration, owners self-reported adverse events and fecal scores. On Days 0 (baseline), 1, 4, 10, and 28 after FMT, fecal and blood samples were collected. The canine fecal dysbiosis index (DI) was calculated using qPCR. RESULTS: No significant changes were found in the following variables: CBC, serum biochemistry, C-reactive protein, serum cytokines (interleukins [IL]-2, -6, -8, tumor necrosis factor [TNF]-α), peripheral leukocytes (B cells, T cells, cluster of differentiation [CD]4+ T cells, CD8+ T cells, T regulatory cells), and the canine DI. Mild vomiting (n = 3), diarrhea (n = 4), decreased activity (n = 2), and inappetence (n = 1) were reported, and resolved without intervention. CONCLUSIONS AND CLINICAL IMPORTANCE: Fecal microbiota transplantation did not significantly alter the evaluated variables and recipients experienced minimal adverse events associated with FMT administration. Fecal microbiota transplantation was not associated with serious adverse events, changes in peripheral immunologic variables, or the canine DI in the short-term.


Asunto(s)
Trasplante de Microbiota Fecal , Animales , Perros , Trasplante de Microbiota Fecal/veterinaria , Trasplante de Microbiota Fecal/efectos adversos , Femenino , Masculino , Heces/microbiología , Estudios Prospectivos , Citocinas/sangre , Citocinas/metabolismo , Disbiosis/veterinaria , Disbiosis/terapia , Microbioma Gastrointestinal
6.
Animals (Basel) ; 14(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540064

RESUMEN

Histopathologic examination of intestinal biopsies from dogs with acute hemorrhagic diarrhea syndrome (AHDS) reveals necrotizing enteritis and epithelial integrity loss. Serum iohexol measurement has been utilized to assess intestinal permeability. Our hypothesis is that dogs with AHDS have increased intestinal permeability, which is associated with the severity of clinical signs. In this prospective case-control study, 53 client-owned dogs (28 AHDS, 25 healthy controls) were evaluated. Clinical severity was assessed using the AHDS index and systemic inflammatory response syndrome (SIRS) criteria. Simultaneously, dogs received oral iohexol, and serum iohexol concentrations (SICs) were measured two hours later. Results indicated significantly higher (p = 0.002) SIC in AHDS dogs (median: 51 µg/mL; min-max: 9-246) than in healthy controls (30 µg/mL; 11-57). There was a significant positive correlation between AHDS index and SIC (rS = 0.4; p = 0.03) and a significant negative between SIC and serum albumin concentrations (Pearson r = -0.55; p = 0.01). Dogs with severe AHDS (mean 106 µg/mL; range: 17-246) demonstrated significantly higher (p = 0.002) SIC than those with mild to moderate disease (29 µg/mL; 9-54). These findings underscore the association between intestinal permeability and clinical severity in dogs with AHDS assessed by iohexol.

7.
Sci Rep ; 14(1): 6939, 2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521833

RESUMEN

Chronic enteropathies (CE) are common disorders in cats and the differentiation between the two main underlying diseases, inflammatory bowel disease (IBD) and low-grade intestinal T-cell lymphoma (LGITL), can be challenging. Characterization of the serum metabolome could provide further information on alterations of disease-associated metabolic pathways and may identify diagnostic or therapeutic targets. Unbiased metabolomics analysis of serum from 28 cats with CE (14 cats with IBD, 14 cats with LGITL) and 14 healthy controls identified 1,007 named metabolites, of which 129 were significantly different in cats with CE compared to healthy controls at baseline. Random Forest analysis revealed a predictive accuracy of 90% for differentiating controls from cats with chronic enteropathy. Metabolic pathways found to be significantly altered included phospholipids, amino acids, thiamine, and tryptophan metabolism. Several metabolites were found to be significantly different between cats with IBD versus LGITL, including several sphingolipids, phosphatidylcholine 40:7, uridine, pinitol, 3,4-dihydroxybenzoic acid, and glucuronic acid. However, random forest analysis revealed a poor group predictive accuracy of 60% for the differentiation of IBD from LGITL. Of 129 compounds found to be significantly different between healthy cats and cats with CE at baseline, 58 remained different following treatment.


Asunto(s)
Enfermedades de los Gatos , Enfermedades Inflamatorias del Intestino , Gatos , Animales , Metabolómica , Metaboloma , Enfermedades de los Gatos/diagnóstico
8.
Front Neurosci ; 18: 1281840, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356649

RESUMEN

Introduction: Alterations in the composition and function of the gut microbiome have been reported in idiopathic epilepsy (IE), however, interactions of gut microbes with the enteric nervous system (ENS) in this context require further study. This pilot study examined how gastrointestinal microbiota (GIM), their metabolites, and nutrients contained in intestinal contents communicate with the ENS. Methods: Fecal supernatants (FS) from healthy dogs and dogs with IE, including drug-naïve, phenobarbital (PB) responsive, and PB non-responsive dogs, were applied to cultured myenteric neurons to test their activation using voltage-sensitive dye neuroimaging. Additionally, the concentrations of short-chain fatty acids (SCFAs) in the FS were quantified. Results: Our findings indicate that FS from all examined groups elicited neuronal activation. Notably, FS from PB non-responsive dogs with IE induced action potential discharge in a higher proportion of enteric neurons compared to healthy controls, which exhibited the lowest burst frequency overall. Furthermore, the highest burst frequency in enteric neurons was observed upon exposure to FS from drug-naïve dogs with IE. This frequency was significantly higher compared to that observed in PB non-responsive dogs with IE and showed a tendency to surpass that of healthy controls. Discussion: Although observed disparities in SCFA concentrations across the various FS samples might be associated with the induced neuronal activity, a direct correlation remains elusive at this point. The obtained results hint at an involvement of the ENS in canine IE and set the basis for future studies.

9.
Animals (Basel) ; 14(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38254385

RESUMEN

Bile acid metabolism is a key pathway modulated by intestinal microbiota. Peptacetobacter (Clostridium) hiranonis has been described as the main species responsible for the conversion of primary into secondary fecal unconjugated bile acids (fUBA) in dogs. This multi-step biochemical pathway is encoded by the bile acid-inducible (bai) operon. We aimed to assess the correlation between P. hiranonis abundance, the abundance of one specific gene of the bai operon (baiCD), and secondary fUBA concentrations. In this retrospective study, 133 fecal samples were analyzed from 24 dogs. The abundances of P. hiranonis and baiCD were determined using qPCR. The concentration of fUBA was measured by gas chromatography-mass spectrometry. The baiCD abundance exhibited a strong positive correlation with secondary fUBA (ρ = 0.7377, 95% CI (0.6461, 0.8084), p < 0.0001). Similarly, there was a strong correlation between P. hiranonis and secondary fUBA (ρ = 0.6658, 95% CI (0.5555, 0.7532), p < 0.0001). Animals displaying conversion of fUBA and lacking P. hiranonis were not observed. These results suggest P. hiranonis is the main converter of primary to secondary bile acids in dogs.

10.
Vet Sci ; 11(1)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38250937

RESUMEN

While shifts in gut microbiota have been studied in diseased states, the temporal variability of the microbiome in cats has not been widely studied. This study investigated the temporal variability of the feline dysbiosis index (DI) and the abundance of core bacterial groups in healthy adult cats. The secondary aim was to evaluate the relationship between the fecal abundance of Clostridium hiranonis and the fecal concentrations of unconjugated bile acids. A total of 142 fecal samples collected from 17 healthy cats were prospectively included: nine cats with weekly collection over 3 weeks (at least four time points), five cats with monthly collection over 2 months (three time points), and three cats with additional collections for up to 10 months. The DI remained stable within the reference intervals over two months for all cats (Friedman test, p > 0.2), and 100% of the DI values (n = 142) collected throughout the study period remained within the RI. While some temporal individual variation was observed for individual taxa, the magnitude was minimal compared to cats with chronic enteropathy and antibiotic exposure. Additionally, the abundance of Clostridium hiranonis was significantly correlated with the percentage of fecal primary bile acids, supporting its role as a bile acid converter in cats.

11.
Gut Microbes ; 16(1): 2295429, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38153260

RESUMEN

Women are at significantly greater risk of metabolic dysfunction after menopause, which subsequently leads to numerous chronic illnesses. The gut microbiome is associated with obesity and metabolic dysfunction, but its interaction with female sex hormone status and the resulting impact on host metabolism remains unclear. Herein, we characterized inflammatory and metabolic phenotypes as well as the gut microbiome associated with ovariectomy and high-fat diet feeding, compared to gonadal intact and low-fat diet controls. We then performed fecal microbiota transplantation (FMT) using gnotobiotic mice to identify the impact of ovariectomy-associated gut microbiome on inflammatory and metabolic outcomes. We demonstrated that ovariectomy led to greater gastrointestinal permeability and inflammation of the gut and metabolic organs, and that a high-fat diet exacerbated these phenotypes. Ovariectomy also led to alteration of the gut microbiome, including greater fecal ß-glucuronidase activity. However, differential changes in the gut microbiome only occurred when fed a low-fat diet, not the high-fat diet. Gnotobiotic mice that received the gut microbiome from ovariectomized mice fed the low-fat diet had greater weight gain and hepatic gene expression related to metabolic dysfunction and inflammation than those that received intact sham control-associated microbiome. These results indicate that the gut microbiome responds to alterations in female sex hormone status and contributes to metabolic dysfunction. Identifying and developing gut microbiome-targeted modulators to regulate sex hormones may be useful therapeutically in remediating menopause-related diseases.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Femenino , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Obesidad/metabolismo , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Ratones Endogámicos C57BL
12.
Animals (Basel) ; 14(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38200798

RESUMEN

Chronic inflammatory enteropathy (CIE) and low-grade intestinal T-cell lymphoma (LGITL) are common chronic enteropathies (CE) in cats. Enteric microbiota dysbiosis is implicated in the pathogenesis of CE; however, the mechanisms of host-microbiome interactions are poorly understood in cats. Microbial indole catabolites of tryptophan (MICT) are gut bacterial catabolites of tryptophan that are hypothesized to regulate intestinal inflammation and mucosal barrier function. MICTs are decreased in the sera of humans with inflammatory bowel disease and previous studies identified altered tryptophan metabolism in cats with CE. We sought to determine whether MICTs were decreased in cats with CE using archived serum samples from cats with CIE (n = 44) or LGITL (n = 31) and healthy controls (n = 26). Quantitative LC-MS/MS was used to measure serum concentrations of tryptophan, its endogenous catabolites (kynurenine, kynurenate, serotonin) and MICTs (indolepyruvate, indolealdehyde, indoleacrylate, indoleacetamide, indoleacetate, indolelactate, indolepropionate, tryptamine). Serum concentrations of tryptophan, indolepropionate, indoleacrylate, indolealdehyde, indolepyruvate, indolelactate were significantly decreased in the CIE and LGITL groups compared to those in healthy controls. Indolelactate concentrations were significantly lower in cats with LGITL compared to CIE (p = 0.006). Significant correlations were detected among serum MICTs and cobalamin, folate, fPLI, and fTLI. Our findings suggest that MICTs are promising biomarkers to investigate the role of gut bacteria in the pathobiology of chronic enteropathies in cats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA