Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JIMD Rep ; 63(5): 446-452, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36101821

RESUMEN

Osteopenia is an under-investigated clinical presentation of phenylalanine hydroxylase (PAH)-deficient phenylketonuria (PKU). While osteopenia is not fully penetrant in human PKU, the Pahenu2 mouse is universally osteopenic and ideal to study the phenotype. We determined Pahenu2 mesenchymal stem cells (MSCs) are developmentally impaired in the osteoblast lineage. Moreover, we determined energy dysregulation and oxidative stress contribute to the osteoblast developmental deficit. The MSC preferred substrate glutamine (Gln) was applied to enhance energy homeostasis. In vitro Pahenu2 MSCs, in the context of 1200 µM Phe, respond to Gln with increased in situ alkaline phosphatase activity indicating augmented osteoblast differentiation. Oximetry applied to Pahenu2 MSCs in osteoblast differentiation show Gln energy substrate increases oxygen consumption, specifically maximum respiration and respiratory reserve. For 60 days post-weaning, Pahenu2 animals received either no intervention (standard lab chow), amino acid defined chow maintaining plasma Phe at ~200 µM, or standard lab chow where ad libitum water was a 2% Gln solution. Bone density was assessed by microcomputed tomography and bone growth assessed by dye labeling. Bone density and dye labeling in Phe-restricted Pahenu2 was indistinguishable from untreated Pahenu2. Gln energy substrate provided to Pahenu2, in the context of uncontrolled hyperphenylalaninemia, present increased bone density and dye labeling. These data provide further evidence that Pahenu2 MSCs experience a secondary energy deficit that is responsive both in vitro and in vivo to Gln energy substrate and independent of hyperphenylalaninemia. Energy support may have effect to treat human PKU osteopenia and elements of PKU neurologic disease resistant to standard of care systemic Phe reduction. Glutamine energy substrate anaplerosis increased Pahenu2 bone density and improved in vitro MSC function in the context of hyperphenylalaninemia in the classical PKU range.

2.
Mol Genet Metab ; 136(1): 38-45, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35367142

RESUMEN

Classical phenylketonuria (PKU, OMIM 261600) owes to hepatic deficiency of phenylalanine hydroxylase (PAH) that enzymatically converts phenylalanine (Phe) to tyrosine (Tyr). PKU neurologic phenotypes include impaired brain development, decreased myelination, early onset mental retardation, seizures, and late-onset features (neuropsychiatric, Parkinsonism). Phe over-representation is systemic; however, tissue response to hyperphenylalaninemia is not consistent. To characterize hyperphenylalaninemia tissue response, metabolomics was applied to Pahenu2 classical PKU mouse blood, liver, and brain. In blood and liver over-represented analytes were principally Phe, Phe catabolites, and Phe-related analytes (Phe-conjugates, Phe-containing dipeptides). In addition to Phe and Phe-related analytes, the metabolomic profile of Pahenu2 brain tissue evidenced oxidative stress responses and energy dysregulation. Glutathione and homocarnosine anti-oxidative responses are apparent Pahenu2 brain. Oxidative stress in Pahenu2 brain was further evidenced by increased reactive oxygen species. Pahenu2 brain presents an increased NADH/NAD ratio suggesting respiratory chain complex 1 dysfunction. Respirometry in Pahenu2 brain mitochondria functionally confirmed reduced respiratory chain activity with an attenuated response to pyruvate substrate. Glycolysis pathway analytes are over-represented in Pahenu2 brain tissue. PKU pathologies owe to liver metabolic deficiency; yet, Pahenu2 liver tissue shows neither energy disruption nor anti-oxidative response. Unique aspects of metabolomic homeostasis in PKU brain tissue along with increased reactive oxygen species and respiratory chain deficit provide insight to neurologic disease mechanisms. While some elements of assumed, long standing PKU neuropathology are enforced by metabolomic data (e.g. reduced tryptophan and serotonin representation), energy dysregulation and tissue oxidative stress expand mechanisms underlying neuropathology.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Animales , Modelos Animales de Enfermedad , Humanos , Metabolómica , Ratones , Estrés Oxidativo , Fenilalanina , Fenilcetonurias/genética , Especies Reactivas de Oxígeno
3.
Organogenesis ; 17(3-4): 50-55, 2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34432558

RESUMEN

Osteopenia is common in phenylalanine hydroxylase deficient phenylketonuria (PKU). PKU is managed by limiting dietary phenylalanine. Osteopenia in PKU might reflect a therapeutic diet, with reduced bone forming materials. However, osteopenia occurs in patients who never received dietary therapy or following short-term therapy. Humans and animal studies find no correlation between bone loss, plasma hyperphenylalaninemia, bone formation, and resorption markers. Work in the Pahenu2 mouse recently showed a mesenchymal stem cell (MSC) developmental defect in the osteoblast pathway. Specifically, Pahenu2 MSCs are affected by energy dysregulation and oxidative stress. In PKU, MSCs oximetry and respirometry show mitochondrial respiratory-chain complex 1 deficit and over-representation of superoxide, producing reactive oxygen species affecting mitochondrial function. Similar mechanisms are involved in aging bone and other rare defects including alkaptonuria and homocysteinemia. Novel interventions to support energy and reduce oxidative stress may restore bone formation PKU patients, and in metabolic diseases with related mechanisms.


Asunto(s)
Enfermedades Óseas Metabólicas , Fenilalanina Hidroxilasa , Fenilcetonurias , Animales , Enfermedades Óseas Metabólicas/etiología , Modelos Animales de Enfermedad , Humanos , Ratones , Fenilalanina , Fenilalanina Hidroxilasa/deficiencia , Fenilcetonurias/complicaciones , Fenilcetonurias/tratamiento farmacológico
4.
Mol Genet Metab ; 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33846068

RESUMEN

Classical phenylketonuria (PKU, OMIM 261600) owes to hepatic deficiency of phenylalanine hydroxylase (PAH) that enzymatically converts phenylalanine (Phe) to tyrosine (Tyr). PKU neurologic phenotypes include impaired brain development, decreased myelination, early onset mental retardation, seizures, and late-onset features (neuropsychiatric, Parkinsonism). PAH deficiency leads to systemic hyperphenylalaninemia; however, the impact of Phe varies between tissues. To characterize tissue response to hyperphenylalaninemia, metabolomics was applied to tissue from therapy noncompliant classical PKU patients (blood, liver), the Pahenu2 classical PKU mouse (blood, liver, brain) and the PAH deficient pig (blood, liver, brain, cerebrospinal fluid). In blood, liver, and CSF from both patients and animal models over-represented analytes were principally Phe, Phe catabolites, and Phe-related analytes (conjugates, Phe-containing dipeptides). In addition to Phe and Phe-related analytes, the metabolomic profile of PKU brain tissue (mouse, pig) evidenced oxidative stress responses and energy dysregulation. In Pahenu2 and PKU pig brain tissues, anti-oxidative response by glutathione and homocarnosine is apparent. Oxidative stress in Pahenu2 brain was further demonstrated by increased reactive oxygen species. In Pahenu2 and PKU pig brain, an increased NADH/NAD ratio suggests a respiratory chain dysfunction. Respirometry in PKU brain mitochondria (mouse, pig) functionally confirmed reduced respiratory chain activity. Glycolysis pathway analytes are over-represented in PKU brain tissue (mouse, pig). PKU pathologies owe to liver metabolic deficiency; yet, PKU liver tissue (mouse, pig, human) shows neither energy disruption nor anti-oxidative response. Unique aspects of metabolomic homeostasis in PKU brain tissue along with increased reactive oxygen species and respiratory chain deficit provide insight to neurologic disease mechanisms. While some elements of assumed, long standing PKU neuropathology are enforced by metabolomic data (e.g. reduced tryptophan and serotonin representation), energy dysregulation and tissue oxidative stress expand mechanisms underlying neuropathology.

5.
Mol Genet Metab ; 132(3): 173-179, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33602601

RESUMEN

Osteopenia occurs in a subset of phenylalanine hydroxylase (PAH) deficient phenylketonuria (PKU) patients. While osteopenia is not fully penetrant in patients, the Pahenu2 classical PKU mouse is universally osteopenic, making it an ideal model of the phenotype. Pahenu2 Phe management, with a Phe-fee amino acid defined diet, does not improve bone density as histomorphometry metrics remain indistinguishable from untreated animals. Previously, we demonstrated Pahenu2 mesenchymal stem cells (MSCs) display impaired osteoblast differentiation. Oxidative stress is recognized in PKU patients and PKU animal models. Pahenu2 MSCs experience oxidative stress determined by intracellular superoxide over-representation. The deleterious impact of oxidative stress on mitochondria is recognized. Oximetry applied to Pahenu2 MSCs identified mitochondrial stress by increased basal respiration with concurrently reduced maximal respiration and respiratory reserve. Proton leak secondary to mitochondrial complex 1 dysfunction is a recognized superoxide source. Respirometry applied to Pahenu2 MSCs, in the course of osteoblast differentiation, identified a partial complex 1 deficit. Pahenu2 MSCs treated with the antioxidant resveratrol demonstrated increased mitochondrial mass by MitoTracker green labeling. In hyperphenylalaninemic conditions, resveratrol increased in situ alkaline phosphatase activity suggesting partial recovery of Pahenu2 MSCs osteoblast differentiation. Up-regulation of oxidative energy production is required for osteoblasts differentiation. Our data suggests impaired Pahenu2 MSC developmental competence involves an energy deficit. We posit energy support and oxidative stress reduction will enable Pahenu2 MSC differentiation in the osteoblast lineage to subsequently increase bone density.


Asunto(s)
Enfermedades Óseas Metabólicas/genética , Estrés Oxidativo/genética , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/genética , Fosfatasa Alcalina/genética , Animales , Densidad Ósea/genética , Enfermedades Óseas Metabólicas/complicaciones , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Enfermedades Óseas Metabólicas/patología , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Fenilalanina/genética , Fenilcetonurias/complicaciones , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/patología , Resveratrol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...