Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Adv Vet Anim Res ; 10(4): 667-676, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38370892

RESUMEN

Objective: This study aims to evaluate the effect of Clostridium perfringens sialidase treatment on monolayer cell behavior using computational screening and an in vitro approach to demonstrate interaction between enzyme-based drugs and ligands in host cells. Materials and Methods: The in silico study was carried out by molecular docking analysis used to predict the interactions between atoms that occur, followed by genetic characterization of sialidase from a wild isolate. Sialidase, which has undergone further production and purification processes exposed to chicken embryonic fibroblast cell culture, and observations-based structural morphology of cells compared between treated cells and normal cells without treatment. Results: Based on an in silico study, C. perfringens sialidase has an excellent binding affinity with Neu5Acα (2.3) Gal ligand receptor with Gibbs energy value (∆G)-7.35 kcal/mol and Ki value of 4.11 µM. Wild C. perfringens isolates in this study have 99.1%-100% similarity to the plc gene, NanH, and NanI genes, while NanJ shows 93.18% similarity compared to the reference isolate from GenBank. Sialidase at 750 and 150 mU may impact the viability, cell count, and cell behavior structure of fibroblast cells by significantly increasing the empty area and perimeter of chicken embryo fibroblast (CEF) cells, while at 30 mU sialidase shows no significant difference compared with mock control. Conclusion: Sialidase-derived C. perfringens has the capacity to compete with viral molecules for attachment to host sialic acid based on in silico analysis. However, sialidase treatment has an impact on monolayer cell fibroblasts given exposure to high doses.

2.
Vet World ; 15(8): 1896-1905, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36313836

RESUMEN

Background and Aim: Clostridium toxins are widely used as medicinal agents. Many active metabolic enzymes, including sialidase (neuraminidase), hyaluronidase, and collagenase, contribute to the mechanism of action of these toxins. Sialidase from Clostridium perfringens recognizes and degrades sialic acid receptors in the host cell glycoprotein, glycolipid, and polysaccharide complexes. Sialic acid promotes the adhesion of various pathogens, including viruses, under pathological conditions. This study aimed to investigate the potential of C. perfringens sialidase protein to inhibit Newcastle disease virus (NDV) infection in ovo model. Materials and Methods: C. perfringens was characterized by molecular identification through polymerase chain reaction (PCR) and is cultured in a broth medium to produce sialidase. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis was conducted to characterize the sialidase protein. In contrast, enzymatic activity and protein concentration were carried out using a neuraminidase assay kit and Bradford to obtain suitable active substances. Furthermore, embryonated chicken egg models were used to observe the toxicity of several sialidase doses. Then, the hemagglutination (HA) titer was obtained, and absolute quantitative reverse transcription-PCR assay was performed to measure the viral replication inhibitory activity of sialidase against NDV. Results: Each isolate had a specific sialidase gene and its product. The sialidase derived from C. perfringens could hydrolyze the sialic acid receptor Neu5Ac (2,6)-Gal higher than Neu5Ac (2,3)Gal in chicken erythrocytes, as observed by enzyme-linked lectin assay. A significant difference (p = 0.05) in the HA titer in the pre-challenge administration group at dosages of 375 mU, 187.5 mU, and 93.75 mU in the competitive inhibition experiment suggests that sialidase inhibits NDV reproduction. Quantification of infective viral copy confirmed the interference of viral replication in the pre-challenge administration group, with a significant difference (p = 0.05) at the treatment doses of 750 mU, 375 mU, and 46.87 mU. Conclusion: The potency of sialidase obtained from C. perfringens was shown in this study, given its ability to reduce the viral titer and copy number in allantoic fluids without adversely impacting the toxicity of the chicken embryo at different concentrations.

3.
J Adv Vet Anim Res ; 9(2): 335-345, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35891661

RESUMEN

Objective: The Newcastle disease virus (NDV) is an infectious disease that causes very high economic losses due to decreased livestock production and poultry deaths. The vaccine's ineffectiveness due to mutation of the genetic structure of the virus impacts obstacles in controlling the disease, especially in some endemic areas. This study aimed to provide an alternative treatment for NDV infection by observing the viral replication inhibitor activity of Clostridium perfringens sialidase in primary chicken embryo fibroblast (CEF) cells. Materials and Methods: The virus was adapted in CEF monolayer cells, then collected thrice using the freeze-thaw method and stored at -20°C for the next step in the challenge procedure. C. perfringens crude sialidase was obtained, but it was further purified via stepwise elution in ion exchange using Q Sepharose® Fast Flow and affinity chromatography with oxamic acid agarose. The purified sialidase was tested for its toxicity, ability to breakdown sialic acid, stopping viral replication, and how treated cells expressed their genes. Results: According to this study, purified C. perfringens sialidase at dosages of 187.5, 93.75, and 46.87 mU effectively hydrolyzes CEF cells' sialic acid and significantly inhibits viral replication on the treated cells. However, sialidase dosages of 375 and 750 mU affected the viability of monolayer CEF cells. Interestingly, downregulation of toll-like receptor (TLR)3 and TLR7 (p < 0.05) in the sialidase-treated group indicates viral endocytosis failure. Conclusions: By stopping endocytosis and viral replication in host cells, sialidase from C. perfringens can be used as an alternative preventive treatment for NDV infection.

4.
Acta Med Indones ; 52(4): 423-430, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33377888

RESUMEN

The COVID-19 pandemic has caused disruption in all aspects of life, and countries around the world have been combating this pandemic using multiple approaches. Success in one country does not guarantee a transferable approach to other countries with different contexts. This review describes the challenges of COVID-19 management in Indonesia as a populous, socially and culturally diverse, and archipelagic country. It aims to provide multidisciplinary perspectives for a safe, evidence-based, and productive new normal as well as a comprehensive and integrated actionable policy for COVID-19 control.


Asunto(s)
COVID-19/epidemiología , Política de Salud , Pandemias/economía , COVID-19/prevención & control , COVID-19/transmisión , Humanos , Indonesia , Salud Laboral , Política Organizacional , Salud Pública , Cuarentena/economía , Factores Socioeconómicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...