Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 807(Pt 3): 151083, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34757103

RESUMEN

Drought is one of the significant natural disasters that incurs billion dollars of economic damage every year. Among all, agricultural drought needs critical attention for drought monitoring due to its direct effect on crop yield and management of irrigation water. Most of the previous studies focused on regionalizing drought using k-means, hierarchal, fuzzy, and entropy-based clustering techniques. However, these techniques are not suitable where the clusters are not separated distinctively, and the number of clusters cannot be estimated automatically. In this study, we have developed agricultural drought hotspot maps using Soil moisture deficit index (SMDI) and the regional severity (S), duration (D), and frequency (F) curves using complex network algorithm for the future warming climate (2041-2070) of the Mahanadi River basin (MRB) in India. We have used a modified dynamic Budyko (DB) hydrological model to simulate daily soil moisture at a spatial scale of 0.25° × 0.25° using input from four GCMs for the RCP 4.5 scenario. The modified DB model was calibrated and validated for the study area. The model proved to be capable of simulating the soil moisture dynamics over the basin and also effectively captured the historical droughts occurred in the basin. The drought hotspot maps of the basin suggest that the northern, south-eastern, and central parts of the basins are going to experience more number of droughts. The results suggest that for most of the clusters, the regional S-D-F curve can be utilized to understand the future drought characteristics at site-specific as well as regional scale, as the confidence band is found to be very narrow. Overall, our study provides a framework to develop regional S-D-F curve.


Asunto(s)
Sequías , Ríos , Cambio Climático , Hidrología , India
2.
Ground Water ; 57(3): 392-408, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30062703

RESUMEN

The "HYDRUS package for MODFLOW" is an existing MODFLOW package that allows MODFLOW to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package is based on incorporating parts of the HYDRUS-1D model (to simulate unsaturated water flow in the vadose zone) into MODFLOW (to simulate saturated groundwater flow). The coupled model is effective in addressing spatially variable saturated-unsaturated hydrological processes at the regional scale. However, one of the major limitations of this coupled model is that it does not have the capability to simulate solute transport along with water flow and therefore, the model cannot be employed for evaluating groundwater contamination. In this work, a modified unsaturated flow and transport package (modified HYDRUS package for MODFLOW and MT3DMS) has been developed and linked to the three-dimensional (3D) groundwater flow model MODFLOW and the 3D groundwater solute transport model MT3DMS. The new package can simulate, in addition to water flow in the vadose zone, also solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption. Due to complex interactions at the groundwater table, certain modifications of the pressure head (compared to the original coupling) and solute concentration profiles were incorporated into the modified HYDRUS package. The performance of the newly developed model is evaluated using HYDRUS (2D/3D), and the results indicate that the new model is effective in simulating the movement of water and contaminants in the saturated-unsaturated flow domains.


Asunto(s)
Agua Subterránea , Hidrología , Modelos Teóricos , Soluciones , Movimientos del Agua
3.
J Environ Manage ; 212: 198-209, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29432999

RESUMEN

Biofuel has emerged as a substantial source of energy in many countries. In order to avoid the 'food versus fuel competition', arising from grain-based ethanol production, the United States has passed regulations that require second generation or cellulosic biofeedstocks to be used for majority of the biofuel production by 2022. Agricultural residue, such as corn stover, is currently the largest source of cellulosic feedstock. However, increased harvesting of crops residue may lead to increased application of fertilizers in order to recover the soil nutrients lost from the residue removal. Alternatively, introduction of less-fertilizer intensive perennial grasses such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus Greef et Deu.) can be a viable source for biofuel production. Even though these grasses are shown to reduce nutrient loads to a great extent, high production cost have constrained their wide adoptability to be used as a viable feedstock. Nonetheless, there is an opportunity to optimize feedstock production to meet bioenergy demand while improving water quality. This study presents a multi-objective simulation optimization framework using Soil and Water Assessment Tool (SWAT) and Multi Algorithm Genetically Adaptive Method (AMALGAM) to develop optimal cropping pattern with minimum nutrient delivery and minimum biomass production cost. Computational time required for optimization was significantly reduced by loose coupling SWAT with an external in-stream solute transport model. Optimization was constrained by food security and biofuel production targets that ensured not more than 10% reduction in grain yield and at least 100 million gallons of ethanol production. A case study was carried out in St. Joseph River Watershed that covers 280,000 ha area in the Midwest U.S. Results of the study indicated that introduction of corn stover removal and perennial grass production reduce nitrate and total phosphorus loads without compromising on food and biofuel production. Optimization runs yielded an optimal cropping pattern with 32% of watershed area in stover removal, 15% in switchgrass and 2% in Miscanthus. The optimal scenario resulted in 14% reduction in nitrate and 22% reduction in total phosphorus from the baseline. This framework can be used as an effective tool to take decisions regarding environmentally and economically sustainable strategies to minimize the nutrient delivery at minimal biomass production cost, while simultaneously meeting food and biofuel production targets.


Asunto(s)
Biocombustibles , Panicum , Biomasa , Medio Oeste de Estados Unidos , Suelo
4.
PLoS One ; 12(1): e0169333, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28072853

RESUMEN

Macrofungi have long been investigated for various scientific purposes including their food and medicinal characteristics. Their role in aerobiology as a fraction of the primary biological aerosol particles (PBAPs), however, has been poorly studied. In this study, we present a source of macrofungi with two different but interdependent objectives: (i) to characterize the macrofungi from a tropical dry evergreen biome in southern India using advanced molecular techniques to enrich the database from this region, and (ii) to assess whether identified species of macrofungi are a potential source of atmospheric PBAPs. From the DNA analysis, we report the diversity of the terrestrial macrofungi from a tropical dry evergreen biome robustly supported by the statistical analyses for diversity conclusions. A total of 113 macrofungal species belonging to 54 genera and 23 families were recorded, with Basidiomycota and Ascomycota constituting 96% and 4% of the species, respectively. The highest species richness was found in the family Agaricaceae (25.3%) followed by Polyporaceae (15.3%) and Marasmiaceae (10.8%). The difference in the distribution of commonly observed macrofungal families over this location was compared with other locations in India (Karnataka, Kerala, Maharashtra, and West Bengal) using two statistical tests. The distributions of the terrestrial macrofungi were distinctly different in each ecosystem. We further attempted to demonstrate the potential role of terrestrial macrofungi as a source of PBAPs in ambient air. In our opinion, the findings from this ecosystem of India will enhance our understanding of the distribution, diversity, ecology, and biological prospects of terrestrial macrofungi as well as their potential to contribute to airborne fungal aerosols.


Asunto(s)
Biodiversidad , Ecosistema , Hongos , Plantas/microbiología , Clima Tropical , Microbiología Ambiental , Hongos/clasificación , Hongos/genética , Hongos/ultraestructura , Incidencia , India , Metagenoma , Metagenómica/métodos , Estaciones del Año , Esporas Fúngicas/ultraestructura
5.
PLoS One ; 11(7): e0158670, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27463092

RESUMEN

India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.


Asunto(s)
Lluvia , Estaciones del Año , Hidrología , India
6.
Sci Total Environ ; 539: 153-164, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26360457

RESUMEN

Rapid land use and land-cover changes strongly affect water resources. Particularly in regions that experience seasonal water scarcity, land use scenario assessments provide a valuable basis for the evaluation of possible future water shortages. The objective of this study is to dynamically integrate land use model projections with a hydrologic model to analyze potential future impacts of land use change on the water resources of a rapidly developing catchment upstream of Pune, India. For the first time projections from the urban growth and land use change model SLEUTH are employed as a dynamic input to the hydrologic model SWAT. By this means, impacts of land use changes on the water balance components are assessed for the near future (2009-2028) employing four different climate conditions (baseline, IPCC A1B, dry, wet). The land use change modeling results in an increase of urban area by +23.1% at the fringes of Pune and by +12.2% in the upper catchment, whereas agricultural land (-14.0% and -0.3%, respectively) and semi-natural area (-9.1% and -11.9%, respectively) decrease between 2009 and 2028. Under baseline climate conditions, these land use changes induce seasonal changes in the water balance components. Water yield particularly increases at the onset of monsoon (up to +11.0mm per month) due to increased impervious area, whereas evapotranspiration decreases in the dry season (up to -15.1mm per month) as a result of the loss of irrigated agricultural area. As the projections are made for the near future (2009-2028) land use change impacts are similar under IPCC A1B climate conditions. Only if more extreme dry years occur, an exacerbation of the land use change impacts can be expected. Particularly in rapidly changing environments an implementation of both dynamic land use change and climate change seems favorable to assess seasonal and gradual changes in the water balance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...