Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2767: 175-188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36773273

RESUMEN

Human pluripotent stem cells (hPSCs) form an ideal system to study the formation of placental cells, from an undifferentiated human embryonic stem cell state. The conventional human in vitro model systems to study the human placenta cannot be employed for understanding placental dysfunctions or the development of specialized placental cell types. Hence, human PSCs make an ideal model system to study human placental development and disorders. Here, we describe an efficient and validated protocol to reproducibly study the formation of human cytotrophoblasts (CTBs) and syncytiotrophoblast (STBs) from undifferentiated hPSCs. CTBs are the trophoblast stem cells that can differentiate into specialized placental cell types such as STBs. The multinucleated STB plays vital role in the exchange of nutrients and gases across the placenta and secretes several hormones during pregnancy, such as human chorionic gonadotropin ß (hCGß). Here we describe two methods of seeding the hPSCs: chemical (clumps method) and enzymatic methods (single cells) to differentiate them to CTB and STB, activating BMP (B) signaling and inhibiting ACTIVIN/NODAL and FGF signaling pathways (2i), thus naming our protocol as "B2i" (Sudheer et al., Stem Cells Dev 21:2987-3000, 2012). This protocol forms the perfect model system for understanding in vitro placentation, modeling diseases arising from abnormal placentation that cause complications such as miscarriage, preeclampsia or intrauterine growth restriction (IUGR), and drug discovery for placental disorders.


Asunto(s)
Enfermedades Placentarias , Células Madre Pluripotentes , Humanos , Embarazo , Femenino , Placenta , Trofoblastos , Placentación/fisiología , Diferenciación Celular/fisiología , Enfermedades Placentarias/metabolismo
2.
Stem Cells Int ; 2021: 8818356, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828592

RESUMEN

Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) are the pluripotent stem cells (PSCs), derived from the inner cell mass (ICM) of preimplantation embryos at embryonic day 3.5 (E3.5) and postimplantation embryos at E5.5-E7.5, respectively. Depending on their environment, PSCs can exist in the so-called naïve (ESCs) or primed (EpiSCs) states. Exposure to EpiSC or human ESC (hESC) culture condition can convert mESCs towards an EpiSC-like state. Here, we show that the undifferentiated epiblast state is however not stabilized in a sustained manner when exposing mESCs to hESC or EpiSC culture condition. Rather, prolonged exposure to EpiSC condition promotes a transition to a primitive streak- (PS-) like state via an unbiased epiblast-like intermediate. We show that the Brachyury-positive PS-like state is likely promoted by endogenous WNT signaling, highlighting a possible species difference between mouse epiblast-like stem cells and human Embryonic Stem Cells.

3.
Front Cell Dev Biol ; 7: 228, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681761

RESUMEN

The early mammalian embryo is characterized by the presence of three germ layers-the outer ectoderm, middle mesoderm and inner endoderm. The mesoderm is organized into paraxial, intermediate and lateral plate mesoderm. The musculature, vasculature and heart of the adult body are the major derivatives of mesoderm. Tracing back the developmental process to generate these specialized tissues has sparked much interest in the field of regenerative medicine focusing on generating specialized tissues to treat patients with degenerative diseases. Several Long Non-Coding RNAs (lncRNAs) have been identified as regulators of development, proliferation and differentiation of various tissues of mesodermal origin. A better understanding of lncRNAs that can regulate the development of these tissues will open potential avenues for their therapeutic utility and enhance our knowledge about disease progression and development. In this review, we aim to summarize the functions and mechanisms of lncRNAs regulating the early mesoderm differentiation, development and homeostasis of skeletal muscle and cardiovascular system with an emphasis on their therapeutic potential.

4.
Reproduction ; 158(3): R97-R111, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31035255

RESUMEN

Pluripotency is the developmental potential of a cell to give rise to all the cells in the three embryonic germ layers, including germline cells. Pluripotent stem cells (PSCs) can be embryonic, germ cell or somatic cell in origin and can adopt alternative states of pluripotency: naïve or primed. Although several reports have described the differentiation of PSCs to extra-embryonic lineages, such as primitive endoderm and trophectoderm, this is still debated among scientists in the field. In this review, we integrate the recent findings on pluripotency among mammals, alternative states of pluripotency, signalling pathways associated with maintaining pluripotency and the nature of PSCs derived from various mammals. PSCs from humans and mouse have been the most extensively studied. In other mammalian species, more research is required for understanding the optimum in vitro conditions required for either achieving pluripotency or preservation of distinct pluripotent states. A comparative high-throughput analysis of PSCs of genes expressed in naïve or primed states of humans, nonhuman primates (NHP) and rodents, based on publicly available datasets revealed the probable prominence of seven signalling pathways common among these species, irrespective of the states of pluripotency. We conclude by highlighting some of the unresolved questions and future directions of research on pluripotency in mammals.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Animales , Humanos
5.
Dev Cell ; 42(5): 514-526.e7, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28826820

RESUMEN

The spinal cord and mesodermal tissues of the trunk such as the vertebral column and skeletal musculature derive from neuro-mesodermal progenitors (NMPs). Sox2, Brachyury (T), and Tbx6 have been correlated with NMP potency and lineage choice; however, their exact role and interaction in these processes have not yet been revealed. Here we present a global analysis of NMPs and their descending lineages performed on purified cells from embryonic day 8.5 wild-type and mutant embryos. We show that T, cooperatively with WNT signaling, controls the progenitor state and the switch toward the mesodermal fate. Sox2 acts antagonistically and promotes neural development. T is also involved in remodeling the chromatin for mesodermal development. Tbx6 reinforces the mesodermal fate choice, represses the progenitor state, and confers paraxial fate commitment. Our findings refine previous models and establish molecular principles underlying mammalian trunk development, comprising NMP maintenance, lineage choice, and mesoderm formation.


Asunto(s)
Linaje de la Célula/genética , Proteínas Fetales/metabolismo , Mesodermo/citología , Neuronas/citología , Factores de Transcripción SOXB1/metabolismo , Células Madre/citología , Proteínas de Dominio T Box/metabolismo , Animales , Secuencia de Bases , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Fetales/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Modelos Biológicos , Neuronas/metabolismo , Factores de Transcripción SOXB1/genética , Análisis de la Célula Individual , Células Madre/metabolismo , Proteínas de Dominio T Box/genética , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/genética
6.
Stem Cells ; 34(7): 1790-800, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27038343

RESUMEN

Presomitic mesoderm (PSM) cells are the precursors of the somites, which flank both sides of the neural tube and give rise to the musculo-skeletal system shaping the vertebrate body. WNT and FGF signaling control the formation of both the PSM and the somites and show a graded distribution with highest levels in the posterior PSM. We have used reporters for the mesoderm/PSM control genes T, Tbx6, and Msgn1 to investigate the differentiation of mouse ESCs from the naïve state via EpiSCs to PSM cells. Here we show that the activation of WNT signaling by CHIR99021 (CH) in combination with FGF ligand induces embryo-like PSM at high efficiency. By varying the FGF ligand concentration, the state of PSM cells formed can be altered. High FGF concentration supports posterior PSM formation, whereas low FGF generates anterior/differentiating PSM, in line with in vivo data. Furthermore, the level of Msgn1 expression depends on the FGF ligand concentration. We also show that Activin/Nodal signaling inhibits CH-mediated PSM induction in EpiSCs, without affecting T-expression. Inversely, Activin/Nodal inhibition enhances PSM induction by WNT/high FGF signaling. The ability to generate PSM cells of either posterior or anterior PSM identity with high efficiency in vitro will promote the investigation of the gene regulatory networks controlling the formation of nascent PSM cells and their switch to differentiating/somitic paraxial mesoderm. Stem Cells 2016;34:1790-1800.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Mesodermo/embriología , Somitos/embriología , Proteínas Wnt/metabolismo , Activinas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Ligandos , Mesodermo/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Somitos/citología
7.
Stem Cells Dev ; 21(16): 2987-3000, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22724507

RESUMEN

Bone morphogenetic protein (BMP) signaling is known to support differentiation of human embryonic stem cells (hESCs) into mesoderm and extraembryonic lineages, whereas other signaling pathways can largely influence this lineage specification. Here, we set out to reinvestigate the influence of ACTIVIN/NODAL and fibroblast growth factor (FGF) pathways on the lineage choices made by hESCs during BMP4-driven differentiation. We show that BMP activation, coupled with inhibition of both ACTIVIN/NODAL and FGF signaling, induces differentiation of hESCs, specifically to ßhCG hormone-secreting multinucleated syncytiotrophoblast and does not support induction of embryonic and extraembryonic lineages, extravillous trophoblast, and primitive endoderm. It has been previously reported that FGF2 can switch BMP4-induced hESC differentiation outcome to mesendoderm. Here, we show that FGF inhibition alone, or in combination with either ACTIVIN/NODAL inhibition or BMP activation, supports hESC differentiation to hCG-secreting syncytiotrophoblast. We show that the inhibition of the FGF pathway acts as a key in directing BMP4-mediated hESC differentiation to syncytiotrophoblast.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Trofoblastos/citología , Activinas/metabolismo , Animales , Comunicación Autocrina/efectos de los fármacos , Comunicación Autocrina/genética , Benzamidas/farmacología , Factor de Transcripción CDX2 , Diferenciación Celular/genética , Fusión Celular , Línea Celular , Gonadotropina Coriónica Humana de Subunidad beta/metabolismo , Dioxoles/farmacología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Endodermo/citología , Endodermo/efectos de los fármacos , Endodermo/metabolismo , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Mesodermo/citología , Mesodermo/efectos de los fármacos , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Proteína Nodal/antagonistas & inhibidores , Proteína Nodal/metabolismo , Placenta/efectos de los fármacos , Placenta/metabolismo , Embarazo , Pirroles/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Proteínas Wnt/metabolismo
8.
Cells Tissues Organs ; 188(1-2): 9-22, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18160822

RESUMEN

Human inner cell mass (ICM) cells isolated from in vitro fertilized blastocysts are the progenitor cells used to establish in vitro stable human embryonic stem cells (hESCs) which are pluripotent and self-renew indefinitely. This long-term perpetuation of hESCs in the undifferentiated state is thought to be an in vitro adaptation of the ICM cells. To investigate at the molecular level how hESCs acquired their unique properties, transcriptional profiles of isolated ICM cells and undifferentiated hESCs were compared. We identified 33 genes enriched in the ICM compared to the trophectoderm and hESCs. These genes are involved in signaling cascades (SEMA7A and MAP3K10), cell proliferation (CUZD1 and MS4A7) and chromatin remodeling (H1FOO and HRMT1L4). Furthermore, primordial germ cell-specific genes (SGCA and TEX11) were detected as expressed in the ICM cells and not hESCs. We propose that the transcriptional differences observed between ICM cells and hESCs might be accounted for by adaptive reprogramming events induced by the in vitro culture conditions which are distinct from that of in vitro fertilized blastocysts. hESCs are a distinct cell type lacking in the human embryo but, nonetheless, resemble the ICM in their ability to differentiate into cells representative of the endodermal, ectodermal and mesodermal cell lineages.


Asunto(s)
Células Madre Embrionarias/citología , Masa Celular Interna del Blastocisto/citología , Masa Celular Interna del Blastocisto/metabolismo , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Factor de Transcripción CDX2 , Diferenciación Celular , Proliferación Celular , Separación Celular , Supervivencia Celular , Ensamble y Desensamble de Cromatina , Análisis por Conglomerados , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/enzimología , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes/genética , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1 , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Brief Funct Genomic Proteomic ; 6(2): 120-32, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17670767

RESUMEN

Early mammalian embryogenesis is currently the focus of intense interest because of the potential of inner cell mass-derived embryonic stem cell lines in new therapeutic strategies. As such, creating molecular profiles of gene expression during pre-implantation development will provide a framework for understanding the biological properties of these cells and also establish a tool set for subsequent functional studies. However, a major obstacle impeding progress in this area are moral issues regarding their use, the scarcity of these cells and the ability to successfully isolate and amplify enough mRNA from the minute amounts of total RNA present in these cells. The elucidation, unravelling and understanding the molecular basis of transcriptional control during pre-implantation development is of utmost importance if we are to diagnose, intervene, eliminate or reduce abnormalities associated with growth, disease and infertility by applying assisted reproduction. Importantly, these studies should enhance our knowledge of basic reproductive biology and its application to regenerative medicine. This review describes the application of in silico-based approaches, in order to obtain maximal information from published microarray-based gene expression data. For an illustration of this, we used gene expression data related to unfertilized oocytes and blastocysts to gain insights into genes and related signalling pathways (e.g. MAPK, PI3K, WNT, TGF-beta) involved in the switch from maternal to embryonic control of gene transcription during human pre-implantation development.


Asunto(s)
Desarrollo Embrionario/genética , Genómica , Blastocisto/metabolismo , Perfilación de la Expresión Génica , Humanos , Modelos Estadísticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Oocitos/metabolismo , Transducción de Señal/genética
10.
Physiol Genomics ; 31(2): 315-27, 2007 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-17595343

RESUMEN

The present study investigated mRNA expression profiles of bovine oocytes and blastocysts by using a cross-species hybridization approach employing an array consisting of 15,529 human cDNAs as probe, thus enabling the identification of conserved genes during human and bovine preimplantation development. Our analysis revealed 419 genes that were expressed in both oocytes and blastocysts. The expression of 1,324 genes was detected exclusively in the blastocyst, in contrast to 164 in the oocyte including a significant number of novel genes. Genes indicative for transcriptional and translational control (ELAVL4, TACC3) were overexpressed in the oocyte, whereas cellular trafficking (SLC2A14, SLC1A3), proteasome (PSMA1, PSMB3), cell cycle (BUB3, CCNE1, GSPT1), and protein modification and turnover (TNK1, UBE3A) genes were found to be overexpressed in blastocysts. Transcripts implicated in chromatin remodeling were found in both oocytes (NASP, SMARCA2) and blastocysts (H2AFY, HDAC7A). The trophectodermal markers PSG2 and KRT18 were enriched 5- and 50-fold in the blastocyst. Pathway analysis revealed differential expression of genes involved in 107 distinct signaling and metabolic pathways. For example, phosphatidylinositol signaling and gluconeogenesis were prominent pathways identified in the blastocyst. Expression patterns in bovine and human blastocysts were to a large extent identical. This analysis compared the transcriptomes of bovine oocytes and blastocysts and provides a solid foundation for future studies on the first major differentiation events in blastocysts and identification of a set of markers indicative for regular mammalian development.


Asunto(s)
Blastocisto/metabolismo , Bovinos/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Animales , Biomarcadores , Desarrollo Embrionario/genética , Humanos , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Oocitos/metabolismo , Especificidad de Órganos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero Almacenado/genética , Especificidad de la Especie , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...