Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 99(5)2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36965868

RESUMEN

Bacterial and fungal root endophytes can impact the fitness of their host plants, but the relative importance of drivers for root endophyte communities is not well known. Host plant species, the composition and density of the surrounding plants, space, and abiotic drivers could significantly affect bacterial and fungal root endophyte communities. We investigated their influence in endophyte communities of alpine plants across a harsh high mountain landscape using high-throughput sequencing. There was less compositional overlap between fungal than bacterial root endophyte communities, with four 'cosmopolitan' bacterial OTUs found in every root sampled, but no fungal OTUs found across all samples. We found that host plant species, which included nine species from three families, explained the greatest variation in root endophyte composition for both bacterial and fungal communities. We detected similar levels of variation explained by plant neighborhood, space, and abiotic drivers on both communities, but the plant neighborhood explained less variation in fungal endophytes than expected. Overall, these findings suggest a more cosmopolitan distribution of bacterial OTUs compared to fungal OTUs, a structuring role of the plant host species for both communities, and largely similar effects of the plant neighborhood, abiotic drivers, and space on both communities.


Asunto(s)
Endófitos , Micobioma , Humanos , Hongos , Plantas/microbiología , Bacterias
2.
Oecologia ; 200(3-4): 385-396, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36224498

RESUMEN

Seed and soil microbiomes strongly affect plant performance, and these effects can scale-up to influence plant community structure. However, seed and soil microbial community composition are variable across landscapes, and different microbial communities can differentially influence multiple plant metrics (biomass, germination rate), and community stabilizing mechanisms. We determined how microbiomes inside seeds and in soils varied among alpine plant species and communities that differed in plant species richness and density. Across 10 common alpine plant species, we found a total of 318 bacterial and 128 fungal operational taxonomic units (OTUs) associated with seeds, with fungal richness affected by plant species identity more than sampling location. However, seed microbes had only marginally significant effects on plant germination success and timing. In contrast, soil microbes associated with two different plant species had significant effects on plant biomass, and their effect depended both on the plant species and the location the soils were sampled from. This led to significant changes in plant-soil feedback at different locations that varied in plant density and richness, such that plant-soil feedback favored plant species coexistence in some locations and opposed coexistence at other locations. Importantly, we found that coexistence-facilitating feedback was associated with low plant species richness, suggesting that soil microbes may promote the diversity of colonizing plants during the course of climate change and glacial recession.


Asunto(s)
Microbiota , Suelo , Suelo/química , Microbiología del Suelo , Plantas , Semillas
3.
Ecol Lett ; 25(12): 2688-2698, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36269682

RESUMEN

Rapid climate change may exceed ecosystems' capacities to respond through processes including phenotypic plasticity, compositional turnover and evolutionary adaption. However, consequences of the resulting climate disequilibria for ecosystem functioning are rarely considered in projections of climate change impacts. Combining statistical models fit to historical climate data and remotely-sensed estimates of herbaceous net primary productivity with an ensemble of climate models, we demonstrate that assumptions concerning the magnitude of climate disequilibrium are a dominant source of uncertainty: models assuming maximum disequilibrium project widespread decreases in productivity in the western US by 2100, while models assuming minimal disequilibrium project productivity increases. Uncertainty related to climate disequilibrium is larger than uncertainties from variation among climate models or emissions pathways. A better understanding of processes that regulate climate disequilibria is essential for improving long-term projections of ecological responses and informing management to maintain ecosystem functioning at historical baselines.


Asunto(s)
Cambio Climático , Ecosistema , Incertidumbre , Predicción , Evolución Biológica
4.
Science ; 377(6606): 594-598, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926035

RESUMEN

Grasslands, which constitute almost 40% of the terrestrial biosphere, provide habitat for a great diversity of animals and plants and contribute to the livelihoods of more than 1 billion people worldwide. Whereas the destruction and degradation of grasslands can occur rapidly, recent work indicates that complete recovery of biodiversity and essential functions occurs slowly or not at all. Grassland restoration-interventions to speed or guide this recovery-has received less attention than restoration of forested ecosystems, often due to the prevailing assumption that grasslands are recently formed habitats that can reassemble quickly. Viewing grassland restoration as long-term assembly toward old-growth endpoints, with appreciation of feedbacks and threshold shifts, will be crucial for recognizing when and how restoration can guide recovery of this globally important ecosystem.


Asunto(s)
Restauración y Remediación Ambiental , Pradera , Animales , Biodiversidad , Bosques , Objetivos , Humanos
5.
Ecol Lett ; 25(8): 1813-1826, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35763598

RESUMEN

Global change is altering patterns of community assembly, with net outcomes dependent on species' responses to the abiotic environment, both directly and mediated through biotic interactions. Here, we assess alpine plant community responses in a 15-year factorial nitrogen addition, warming and snow manipulation experiment. We used a dynamic competition model to estimate the density-dependent and -independent processes underlying changes in species-group abundances over time. Density-dependent shifts in competitive interactions drove long-term changes in abundance of species-groups under global change while counteracting environmental drivers limited the growth response of the dominant species through density-independent mechanisms. Furthermore, competitive interactions shifted with the environment, primarily with nitrogen and drove non-linear abundance responses across environmental gradients. Our results highlight that global change can either reshuffle species hierarchies or further favour already-dominant species; predicting which outcome will occur requires incorporating both density-dependent and -independent mechanisms and how they interact across multiple global change factors.


Asunto(s)
Nitrógeno , Plantas , Ecosistema
6.
Ecology ; 103(4): e3650, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35112356

RESUMEN

Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics. In both simulated and empirical communities, we show that synchronous and compensatory dynamics are not mutually exclusive but instead can vary by timescale. Our simulations identify multiple mechanisms that can generate timescale-specific patterns, including different environmental drivers, diverse life histories, dispersal, and non-stationary dynamics. We find that traditional metrics for quantifying synchronous dynamics are often biased toward long-term drivers and may miss the importance of short-term drivers. Our findings indicate key mechanisms to consider when assessing synchronous versus compensatory dynamics and our approach provides a pathway for disentangling these dynamics in natural systems.


Asunto(s)
Ecosistema , Dinámica Poblacional
7.
Ecology ; 103(4): e3651, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35084772

RESUMEN

A goal in trait-based ecology is to understand and predict plant community responses to environmental change; however, diversity stored within seed banks that may expand or limit these responses is typically overlooked. If seed banks store attributes that are more advantageous or vulnerable under future conditions, they could impact community adaptability to change and disturbance. We explored compositional differences between seed banks and vegetation (i.e., seed bank bias) across a 12-site gradient of increasingly higher and older soil terraces, asking: How do seed banks contribute to taxonomic and functional composition, and what do shifts in seed bank biases along the gradient (i.e., tracking) reveal about the processes driving seed bank variation and its implications for community adaptability? Across the gradient, seed banks stored distinct pools of species that added to species richness but not functional dispersion. Seed banks were generally biased toward short-life histories and "fast" species with small seeds, thinner and more acquisitive roots, and lower root biomass allocation; however, trait means in the seed bank and vegetation sometimes shifted along the gradient, amplifying or reversing these biases. For example, species with higher specific leaf area (tied to rapid resource acquisition) tended to dominate vegetation on lower soil terraces, but were more common in the seed bank on higher terraces-at least when patterns were weighted by species' relative abundances. Although seed banks were generally characterized by "fast" attributes, observed shifts in seed bank biases across the gradient-particularly in leaf traits-demonstrate that environment can impact stored diversity and, consequently, our expectations for future vegetative turnover. The seed bank bias patterns that we characterized could be the result of many potential processes, including environment- or trait-driven variation in seed bank inputs (seed production, dispersal) or losses (seed desiccation, germination), and may have important implications for a system's adaptive capacity. Only by integrating seed banks into the functional ecology agenda will we be able to unpack these processes and use seed banks more effectively in both prediction and ecosystem management.


Asunto(s)
Ecosistema , Banco de Semillas , Sesgo , Semillas/fisiología , Suelo
8.
Ecology ; 103(1): e03554, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34622953

RESUMEN

Global change alters ecosystems and their functioning, and biotic interactions can either buffer or amplify such changes. We utilized a long-term nitrogen (N) addition and species removal experiment in the Front Range of Colorado, USA to determine whether a codominant forb and a codominant grass, with different effects on nutrient cycling and plant community structure, would buffer or amplify the effects of simulated N deposition on soil bacterial and fungal communities. While the plant community was strongly shaped by both the presence of dominant species and N addition, we did not find a mediating effect of the plant community on soil microbial response to N. In contrast to our hypothesis, we found a decoupling of the plant and microbial communities such that the soil microbial community shifted under N independently of directional shifts in the plant community. These findings suggest there are not strong cascading effects of N deposition across the plant-soil interface in our system.


Asunto(s)
Microbiota , Suelo , Bacterias , Ecosistema , Hongos , Nitrógeno , Microbiología del Suelo
9.
Ecology ; 103(6): e3626, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34967948

RESUMEN

Plants are subject to trade-offs among growth strategies such that adaptations for optimal growth in one condition can preclude optimal growth in another. Thus, we predicted that a plant species that responds positively to one global change treatment would be less likely than average to respond positively to another treatment, particularly for pairs of treatments that favor distinct traits. We examined plant species' abundances in 39 global change experiments manipulating two or more of the following: CO2 , nitrogen, phosphorus, water, temperature, or disturbance. Overall, the directional response of a species to one treatment was 13% more likely than expected to oppose its response to a another single-factor treatment. This tendency was detectable across the global data set, but held little predictive power for individual treatment combinations or within individual experiments. Although trade-offs in the ability to respond to different global change treatments exert discernible global effects, other forces obscure their influence in local communities.


Asunto(s)
Nitrógeno , Plantas , Aclimatación , Temperatura , Agua
10.
Oecologia ; 197(3): 651-660, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34642816

RESUMEN

The presence of invasive species reduces the growth and performance of native species; however, the linear or non-linear relationships between invasive abundance and native population declines are less often studied. We examine how the amount and spatial distribution of experimental N deposition influences the relationship between non-native, invasive annual grass abundance (Bromus hordeaceus and Bromus diandrus) and a dominant, native perennial grass species (Stipa pulchra) in California. We hypothesized that native populations would decline as invasion increased, and that high nitrogen availability would cause native species to decline at lower invasion levels. We predicted that the rate of population decline would be slower in heterogeneous, compared to homogeneous, environments. We employed a field experiment that manipulated the amount and spatial heterogeneity of N addition across a range of invasive/native-dominated communities. There were strong negative and non-linear associations between level of invasion and S. pulchra proportional change (PC). Stipa pulchra PC was more negative and seedling survival was lower when N was added, and the negative effects of N addition on PC became larger in the final year of the study when S. pulchra had the largest declines. There was not strong evidence showing reduced competition in heterogeneous, compared to homogeneous, N treatments. Soil moisture was similar between S. pulchra and B. hordeaceus plots under ambient N, but B. hordeaceus under added N reduced soil moisture. Under N addition, Bromus spp. take up N earlier, reduce soil moisture, and create dry conditions in which S. pulchra declines.


Asunto(s)
Pradera , Nitrógeno , Animales , Bromus , California , Poaceae , Suelo
11.
Ecology ; 102(11): e03486, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34289105

RESUMEN

Synchrony is broadly important to population and community dynamics due to its ubiquity and implications for extinction dynamics, system stability, and species diversity. Investigations of synchrony in community ecology have tended to focus on covariance in the abundances of multiple species in a single location. Yet, the importance of regional environmental variation and spatial processes in community dynamics suggests that community properties, such as species richness, could fluctuate synchronously across patches in a metacommunity, in an analog of population spatial synchrony. Here, we test the prevalence of this phenomenon and the conditions under which it may occur using theoretical simulations and empirical data from 20 marine and terrestrial metacommunities. Additionally, given the importance of biodiversity for stability of ecosystem function, we posit that spatial synchrony in species richness is strongly related to stability. Our findings show that metacommunities often exhibit spatial synchrony in species richness. We also found that richness synchrony can be driven by environmental stochasticity and dispersal, two mechanisms of population spatial synchrony. Richness synchrony also depended on community structure, including species evenness and beta diversity. Strikingly, ecosystem stability was more strongly related to richness synchrony than to species richness itself, likely because richness synchrony integrates information about community processes and environmental forcing. Our study highlights a new approach for studying spatiotemporal community dynamics and emphasizes the spatial dimensions of community dynamics and stability.


Asunto(s)
Biodiversidad , Ecosistema , Ecología
12.
New Phytol ; 231(6): 2150-2161, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34105783

RESUMEN

Dryland net primary productivity (NPP) is sensitive to temporal variation in precipitation (PPT), but the magnitude of this 'temporal sensitivity' varies spatially. Hypotheses for spatial variation in temporal sensitivity have often emphasized abiotic factors, such as moisture limitation, while overlooking biotic factors, such as vegetation structure. We tested these hypotheses using spatiotemporal models fit to remote-sensing data sets to assess how vegetation structure and climate influence temporal sensitivity across five dryland ecoregions of the western USA. Temporal sensitivity was higher in locations and ecoregions dominated by herbaceous vegetation. By contrast, much less spatial variation in temporal sensitivity was explained by mean annual PPT. In fact, ecoregion-specific models showed inconsistent associations of sensitivity and PPT; whereas sensitivity decreased with increasing mean annual PPT in most ecoregions, it increased with mean annual PPT in the most arid ecoregion, the hot deserts. The strong, positive influence of herbaceous vegetation on temporal sensitivity indicates that herbaceous-dominated drylands will be particularly sensitive to future increases in precipitation variability and that dramatic changes in cover type caused by invasions or shrub encroachment will lead to changes in dryland NPP dynamics, perhaps independent of changes in precipitation.


Asunto(s)
Cambio Climático , Ecosistema , Clima , América del Norte
13.
Ecol Lett ; 24(9): 1892-1904, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34170615

RESUMEN

Global change is impacting plant community composition, but the mechanisms underlying these changes are unclear. Using a dataset of 58 global change experiments, we tested the five fundamental mechanisms of community change: changes in evenness and richness, reordering, species gains and losses. We found 71% of communities were impacted by global change treatments, and 88% of communities that were exposed to two or more global change drivers were impacted. Further, all mechanisms of change were equally likely to be affected by global change treatments-species losses and changes in richness were just as common as species gains and reordering. We also found no evidence of a progression of community changes, for example, reordering and changes in evenness did not precede species gains and losses. We demonstrate that all processes underlying plant community composition changes are equally affected by treatments and often occur simultaneously, necessitating a wholistic approach to quantifying community changes.


Asunto(s)
Biodiversidad , Ecosistema , Plantas
14.
Nat Commun ; 12(1): 3442, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117253

RESUMEN

Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Plantas , Reproducción/fisiología , Tundra , Regiones Árticas , Clima , Ecosistema , Flores , Modelos Biológicos , Fenotipo , Plantas/genética , Estaciones del Año , Análisis Espacio-Temporal , Temperatura
15.
Oecologia ; 194(4): 735-744, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33130915

RESUMEN

Understanding how global change drivers (GCDs) affect aboveground net primary production (ANPP) through time is essential to predicting the reliability and maintenance of ecosystem function and services in the future. While GCDs, such as drought, warming and elevated nutrients, are known to affect mean ANPP, less is known about how they affect inter-annual variability in ANPP. We examined 27 global change experiments located in 11 different herbaceous ecosystems that varied in both abiotic and biotic conditions, to investigate changes in the mean and temporal variability of ANPP (measured as the coefficient of variation) in response to different GCD manipulations, including resource additions, warming, and irrigation. From this comprehensive data synthesis, we found that GCD treatments increased mean ANPP. However, GCD manipulations both increased and decreased temporal variability of ANPP (24% of comparisons), with no net effect overall. These inconsistent effects on temporal variation in ANPP can, in part, be attributed to site characteristics, such as mean annual precipitation and temperature as well as plant community evenness. For example, decreases in temporal variability in ANPP with the GCD treatments occurred in wetter and warmer sites with lower plant community evenness. Further, the addition of several nutrients simultaneously increased the sensitivity of ANPP to interannual variation in precipitation. Based on this analysis, we expect that GCDs will likely affect the magnitude more than the reliability over time of ecosystem production in the future.


Asunto(s)
Ecosistema , Lluvia , Sequías , Plantas , Poaceae , Reproducibilidad de los Resultados
16.
Nat Ecol Evol ; 4(11): 1449-1450, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32807946
17.
Ecology ; 101(9): e03095, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32380574

RESUMEN

As organisms shift their geographic distributions in response to climate change, biotic interactions have emerged as an important factor driving the rate and success of range expansions. Plant-microbe interactions are an understudied but potentially important factor governing plant range shifts. We studied the distribution and function of microbes present in high-elevation unvegetated soils, areas that plants are colonizing as climate warms, snow melts earlier, and the summer growing season lengthens. Using a manipulative snowpack and microbial inoculation transplant experiment, we tested the hypothesis that growing-season length and microbial community composition interact to control plant elevational range shifts. We predicted that a lengthening growing season combined with dispersal to patches of soils with more mutualistic microbes and fewer pathogenic microbes would facilitate plant survival and growth in previously unvegetated areas. We identified negative effects on survival of the common alpine bunchgrass Deschampsia cespitosa in both short and long growing seasons, suggesting an optimal growing-season length for plant survival in this system that balances time for growth with soil moisture levels. Importantly, growing-season length and microbes interacted to affect plant survival and growth, such that microbial community composition increased in importance in suboptimal growing-season lengths. Further, plants grown with microbes from unvegetated soils grew as well or better than plants grown with microbes from vegetated soils. These results suggest that the rate and spatial extent of plant colonization of unvegetated soils in mountainous areas experiencing climate change could depend on both growing-season length and soil microbial community composition, with microbes potentially playing more important roles as growing seasons lengthen.


Asunto(s)
Microbiología del Suelo , Suelo , Cambio Climático , Plantas , Estaciones del Año
18.
Ecol Lett ; 22(10): 1658-1667, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31298471

RESUMEN

Environmental variability can structure species coexistence by enhancing niche partitioning. Modern coexistence theory highlights two fluctuation-dependent temporal coexistence mechanisms -the storage effect and relative nonlinearity - but empirical tests are rare. Here, we experimentally test if environmental fluctuations enhance coexistence in a California annual grassland. We manipulate rainfall timing and relative densities of the grass Avena barbata and forb Erodium botrys, parameterise a demographic model, and partition coexistence mechanisms. Rainfall variability was integral to grass-forb coexistence. Variability enhanced growth rates of both species, and early-season drought was essential for Erodium persistence. While theoretical developments have focused on the storage effect, it was not critical for coexistence. In comparison, relative nonlinearity strongly stabilised coexistence, where Erodium experienced disproportionately high growth under early-season drought due to competitive release from Avena. Our results underscore the importance of environmental variability and suggest that relative nonlinearity is a critical if underappreciated coexistence mechanism.


Asunto(s)
Pradera , Poaceae/clasificación , Poaceae/crecimiento & desarrollo , Lluvia , California , Sequías
19.
Nat Plants ; 5(7): 697-705, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31263243

RESUMEN

Atmospheric nitrogen and sulfur pollution increased over much of the United States during the twentieth century from fossil fuel combustion and industrial agriculture. Despite recent declines, nitrogen and sulfur deposition continue to affect many plant communities in the United States, although which species are at risk remains uncertain. We used species composition data from >14,000 survey sites across the contiguous United States to evaluate the association between nitrogen and sulfur deposition and the probability of occurrence for 348 herbaceous species. We found that the probability of occurrence for 70% of species was negatively associated with nitrogen or sulfur deposition somewhere in the contiguous United States (56% for N, 51% for S). Of the species, 15% and 51% potentially decreased at all nitrogen and sulfur deposition rates, respectively, suggesting thresholds below the minimum deposition they receive. Although more species potentially increased than decreased with nitrogen deposition, increasers tended to be introduced and decreasers tended to be higher-value native species. More vulnerable species tended to be shorter with lower tissue nitrogen and magnesium. These relationships constitute predictive equations to estimate critical loads. These results demonstrate that many herbaceous species may be at risk from atmospheric deposition and can inform improvements to air quality policies in the United States and globally.


Asunto(s)
Nitrógeno/química , Plantas/química , Azufre/química , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/metabolismo , Contaminación del Aire , Monitoreo del Ambiente , Cinética , Nitrógeno/metabolismo , Plantas/clasificación , Plantas/metabolismo , Azufre/metabolismo , Estados Unidos
20.
Ecol Lett ; 22(8): 1274-1284, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31149765

RESUMEN

Plant-soil feedback (PSF) theory provides a powerful framework for understanding plant dynamics by integrating growth assays into predictions of whether soil communities stabilise plant-plant interactions. However, we lack a comprehensive view of the likelihood of feedback-driven coexistence, partly because of a failure to analyse pairwise PSF, the metric directly linked to plant species coexistence. Here, we determine the relative importance of plant evolutionary history, traits, and environmental factors for coexistence through PSF using a meta-analysis of 1038 pairwise PSF measures. Consistent with eco-evolutionary predictions, feedback is more likely to mediate coexistence for pairs of plant species (1) associating with similar guilds of mycorrhizal fungi, (2) of increasing phylogenetic distance, and (3) interacting with native microbes. We also found evidence for a primary role of pathogens in feedback-mediated coexistence. By combining results over several independent studies, our results confirm that PSF may play a key role in plant species coexistence, species invasion, and the phylogenetic diversification of plant communities.


Asunto(s)
Micorrizas , Filogenia , Microbiología del Suelo , Plantas , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...