Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Psychol Med ; : 1-14, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500410

RESUMEN

BACKGROUND: Previous research on the changes in resting-state functional connectivity (rsFC) in anorexia nervosa (AN) has been limited by an insufficient sample size, which reduced the reliability of the results and made it difficult to set the whole brain as regions of interest (ROIs). METHODS: We analyzed functional magnetic resonance imaging data from 114 female AN patients and 135 healthy controls (HC) and obtained self-reported psychological scales, including eating disorder examination questionnaire 6.0. One hundred sixty-four cortical, subcortical, cerebellar, and network parcellation regions were considered as ROIs. We calculated the ROI-to-ROI rsFCs and performed group comparisons. RESULTS: Compared to HC, AN patients showed 12 stronger rsFCs mainly in regions containing dorsolateral prefrontal cortex (DLPFC), and 33 weaker rsFCs primarily in regions containing cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between anterior cingulate cortex (ACC) and thalamus (p < 0.01, false discovery rate [FDR] correction). Comparisons between AN subtypes showed that there were stronger rsFCs between right lingual gyrus and right supracalcarine cortex and between left temporal occipital fusiform cortex and medial part of visual network in the restricting type compared to the binge/purging type (p < 0.01, FDR correction). CONCLUSION: Stronger rsFCs in regions containing mainly DLPFC, and weaker rsFCs in regions containing primarily cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between ACC and thalamus, may represent categorical diagnostic markers discriminating AN patients from HC.

2.
Mol Psychiatry ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38246936

RESUMEN

Although brain morphological abnormalities have been reported in anorexia nervosa (AN), the reliability and reproducibility of previous studies were limited due to insufficient sample sizes, which prevented exploratory analysis of the whole brain as opposed to regions of interest (ROIs). Objective was to identify brain morphological abnormalities in AN and the association with severity of AN by brain structural magnetic resonance imaging (MRI) in a multicenter study, and to conduct exploratory analysis of the whole brain. Here, we conducted a cross-sectional multicenter study using T1-weighted imaging (T1WI) data collected between May 2014 and February 2019 in Japan. We analyzed MRI data from 103 female AN patients (58 anorexia nervosa restricting type [ANR] and 45 anorexia nervosa binge-purging type [ANBP]) and 102 age-matched female healthy controls (HC). MRI data from five centers were preprocessed using the latest harmonization method to correct for intercenter differences. Gray matter volume (GMV) was calculated from T1WI data of all participants. Of the 205 participants, we obtained severity of eating disorder symptom scores from 179 participants, including 87 in the AN group (51 ANR, 36 ANBP) and 92 HC using the Eating Disorder Examination Questionnaire (EDE-Q) 6.0. GMV reduction were observed in the AN brain, including the bilateral cerebellum, middle and posterior cingulate gyrus, supplementary motor cortex, precentral gyrus medial segment, and thalamus. In addition, the orbitofrontal cortex (OFC), ventromedial prefrontal cortex (vmPFC), rostral anterior cingulate cortex (ACC), and posterior insula volumes showed positive correlations with severity of symptoms. This multicenter study was conducted with a large sample size to identify brain morphological abnormalities in AN. The findings provide a better understanding of the pathogenesis of AN and have potential for the development of brain imaging biomarkers of AN. Trial Registration: UMIN000017456. https://center6.umin.ac.jp/cgi-open-bin/icdr/ctr_view.cgi?recptno=R000019303 .

3.
J Neurochem ; 161(2): 129-145, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35233765

RESUMEN

Increasing evidence suggests the involvement of peripheral amino acid metabolism in the pathophysiology of neuropsychiatric disorders, whereas the molecular mechanisms are largely unknown. Tetrahydrobiopterin (BH4) is a cofactor for enzymes that catalyze phenylalanine metabolism, monoamine synthesis, nitric oxide production, and lipid metabolism. BH4 is synthesized from guanosine triphosphate and regenerated by quinonoid dihydropteridine reductase (QDPR), which catalyzes the reduction of quinonoid dihydrobiopterin. We analyzed Qdpr-/- mice to elucidate the physiological significance of the regeneration of BH4. We found that the Qdpr-/- mice exhibited mild hyperphenylalaninemia and monoamine deficiency in the brain, despite the presence of substantial amounts of BH4 in the liver and brain. Hyperphenylalaninemia was ameliorated by exogenously administered BH4, and dietary phenylalanine restriction was effective for restoring the decreased monoamine contents in the brain of the Qdpr-/- mice, suggesting that monoamine deficiency was caused by the secondary effect of hyperphenylalaninemia. Immunohistochemical analysis showed that QDPR was primarily distributed in oligodendrocytes but hardly detectable in monoaminergic neurons in the brain. Finally, we performed a behavioral assessment using a test battery. The Qdpr-/- mice exhibited enhanced fear responses after electrical foot shock. Taken together, our data suggest that the perturbation of BH4 metabolism should affect brain monoamine levels through alterations in peripheral amino acid metabolism, and might contribute to the development of anxiety-related psychiatric disorders. Cover Image for this issue: https://doi.org/10.1111/jnc.15398.


Asunto(s)
Biopterinas , Fenilcetonurias , Animales , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Dihidropteridina Reductasa , Miedo , Humanos , Ratones , Fenilalanina , Fenilcetonurias/genética , Fenilcetonurias/metabolismo
4.
Biopsychosoc Med ; 12: 6, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29713371

RESUMEN

BAKGROUND: Patients with behavioral disorders following severe traumatic brain injury (sTBI) often have disorders of consciousness that make expressing their emotional distress difficult. However, no standard method for assessing the unsettled and unforeseen responses that are associated with behavioral disorders has yet to be established. Because the thalamus is known to play a role in maintaining consciousness and cognition, we used 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) to examine the association between brain glucose metabolism in the thalamus and behavioral disorders. METHODS: We retrospectively analyzed 70 consecutive patients with sTBI who had been involved in motor vehicle accidents. To assess behavioral disorders, we evaluated 18 symptoms using the Brief Psychiatric Rating Scale (BPRS): Emotional Withdrawal, Conceptual Disorganization, Tension, Mannerisms and Posturing, Motor Retardation, Uncooperativeness, Blunted Affect, Excitement, Somatic Concern, Anxiety, Feeling of Guilt, Grandiosity, Depressive Mood, Hostility, Suspiciousness, Hallucinatory Behavior, Unusual Thought Content, and Disorientation. First, we identified clinical characteristics of sTBI patients with behavioral disorders. Next, we retrospectively analyzed 18F-FDG-PET/CT data to assess how thalamic activity was related with abnormal behaviors. RESULTS: Twenty-six patients possessed the minimum communicatory ability required for psychiatric interview. Among them, 15 patients (57.7%) were diagnosed with behavioral disorder, 14 of whom had reached a stable psychiatric state after about 426.6 days of treatment. Excitement (13 patients) and uncooperativeness (10 patients) were the most frequently observed symptoms. Available 18F-FDG-PET/CT data indicated that thalamic glucose metabolism was imbalanced and lateralized (p = 0.04) in 6 patients who exhibited uncooperativeness. CONCLUSIONS: Behavioral symptoms of excitement and uncooperativeness were common in patients with sTBI, although most symptoms improved as the chronic stage continued. Our data support the idea that imbalanced laterality of glucose metabolism in the thalamus might be related to behavioral disorders characterized by uncooperativeness. TRIAL REGISTRATION: UMIN 000029531. Registered 27 March 2017, retrospectively registered.

5.
Org Lett ; 19(7): 1610-1613, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28322569

RESUMEN

A metal-free photo-oxidative intermolecular C-H/C-H coupling reaction of thiophenes is demonstrated with carbonyls using a catalytic amount of molecular iodine. In this system, molecular oxygen in the air acted as a terminal oxidant to regenerate molecular iodine. A mechanistic study was also performed.

6.
DNA Res ; 23(6): 561-570, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27501718

RESUMEN

The brown alga, Cladosiphon okamuranus (Okinawa mozuku), is economically one of the most important edible seaweeds, and is cultivated for market primarily in Okinawa, Japan. C. okamuranus constitutes a significant source of fucoidan, which has various physiological and biological activities. To facilitate studies of seaweed biology, we decoded the draft genome of C. okamuranus S-strain. The genome size of C. okamuranus was estimated as ∼140 Mbp, smaller than genomes of two other brown algae, Ectocarpus siliculosus and Saccharina japonica Sequencing with ∼100× coverage yielded an assembly of 541 scaffolds with N50 = 416 kbp. Together with transcriptomic data, we estimated that the C. okamuranus genome contains 13,640 protein-coding genes, approximately 94% of which have been confirmed with corresponding mRNAs. Comparisons with the E. siliculosus genome identified a set of C. okamuranus genes that encode enzymes involved in biosynthetic pathways for sulfated fucans and alginate biosynthesis. In addition, we identified C. okamuranus genes for enzymes involved in phlorotannin biosynthesis. The present decoding of the Cladosiphon okamuranus genome provides a platform for future studies of mozuku biology.


Asunto(s)
Genoma , Phaeophyceae/genética , Algas Marinas/genética , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Polisacáridos/genética , Polisacáridos/metabolismo , Transcriptoma
7.
FEBS Lett ; 588(21): 3924-31, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25240194

RESUMEN

Quinonoid dihydropteridine reductase (QDPR) catalyzes the regeneration of tetrahydrobiopterin (BH4), a cofactor for monoamine synthesis, phenylalanine hydroxylation and nitric oxide production. Here, we produced and analyzed a transgenic Qdpr(-/-) mouse model. Unexpectedly, the BH4 contents in the Qdpr(-/-) mice were not decreased and even increased in some tissues, whereas those of the oxidized form dihydrobiopterin (BH2) were significantly increased. We demonstrated that unlike the wild-type mice, dihydrofolate reductase regenerated BH4 from BH2 in the mutants. Furthermore, we revealed wide alterations in folate-associated metabolism in the Qdpr(-/-) mice, which suggests an interconnection between folate and biopterin metabolism in the transgenic mouse model.


Asunto(s)
Biopterinas/análogos & derivados , Ácido Fólico/metabolismo , Oxidorreductasas/deficiencia , Animales , Biopterinas/metabolismo , Ácido Fólico/análogos & derivados , Cinética , Metabolómica , Metotrexato/farmacología , Ratones , Ratones Transgénicos , Oxidorreductasas/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
8.
Mol Brain ; 1: 6, 2008 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-18803808

RESUMEN

Elucidating the neural and genetic factors underlying psychiatric illness is hampered by current methods of clinical diagnosis. The identification and investigation of clinical endophenotypes may be one solution, but represents a considerable challenge in human subjects. Here we report that mice heterozygous for a null mutation of the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha-CaMKII+/-) have profoundly dysregulated behaviours and impaired neuronal development in the dentate gyrus (DG). The behavioral abnormalities include a severe working memory deficit and an exaggerated infradian rhythm, which are similar to symptoms seen in schizophrenia, bipolar mood disorder and other psychiatric disorders. Transcriptome analysis of the hippocampus of these mutants revealed that the expression levels of more than 2000 genes were significantly changed. Strikingly, among the 20 most downregulated genes, 5 had highly selective expression in the DG. Whereas BrdU incorporated cells in the mutant mouse DG was increased by more than 50 percent, the number of mature neurons in the DG was dramatically decreased. Morphological and physiological features of the DG neurons in the mutants were strikingly similar to those of immature DG neurons in normal rodents. Moreover, c-Fos expression in the DG after electric footshock was almost completely and selectively abolished in the mutants. Statistical clustering of human post-mortem brains using 10 genes differentially-expressed in the mutant mice were used to classify individuals into two clusters, one of which contained 16 of 18 schizophrenic patients. Nearly half of the differentially-expressed probes in the schizophrenia-enriched cluster encoded genes that are involved in neurogenesis or in neuronal migration/maturation, including calbindin, a marker for mature DG neurons. Based on these results, we propose that an "immature DG" in adulthood might induce alterations in behavior and serve as a promising candidate endophenotype of schizophrenia and other human psychiatric disorders.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/deficiencia , Giro Dentado/enzimología , Giro Dentado/patología , Endofenotipos , Trastornos Mentales/enzimología , Adulto , Animales , Biomarcadores/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Análisis por Conglomerados , Giro Dentado/fisiopatología , Giro Dentado/ultraestructura , Femenino , Humanos , Masculino , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/fisiopatología , Trastornos Mentales/complicaciones , Trastornos Mentales/fisiopatología , Ratones , Persona de Mediana Edad , Fibras Musgosas del Hipocampo/fisiopatología , Fibras Musgosas del Hipocampo/ultraestructura , Cambios Post Mortem , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...