Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1267, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218732

RESUMEN

Room temperature wafer bonding is a desirable approach for the packaging and assembly of diverse electronic devices. The formation of [Formula: see text] layer at the bonding interface is crucial for a reliable wafer bonding as represented by conventional bonding techniques such as hydrophilic bonding and glass frit bonding. This paper reports a novel concept of room temperature wafer bonding based on the conversion of polysilazane to [Formula: see text] at the bonding interface. As polysilazane is converted to [Formula: see text] by hydrolysis, in this work, adsorbed water is introduced to the bonding interface by plasma treatment, thereby facilitating the formation of [Formula: see text] at the wafer bonding interface. The experimental results indicate that the adsorbed water from the plasma treatment diffuses into the polysilazane layer and facilitates its hydrolysis and conversion. The proposed method demonstrates the successful wafer bonding at room temperature with high bond strength without interfacial voids. This technique will provide a new approach of bonding wafers at room temperature for electronics packaging.

2.
Micromachines (Basel) ; 14(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37512675

RESUMEN

Cu-Cu direct interconnects are highly desirable for the microelectronic industry as they allow for significant reductions in the size and spacing of microcontacts. The main challenge associated with using Cu is its tendency to rapidly oxidize in air. This research paper describes a method of Cu passivation using a self-assembled monolayer (SAM) to protect the surface against oxidation. However, this approach faces two main challenges: the degradation of the SAM at room temperature in the ambient atmosphere and the monolayer desorption technique prior to Cu-Cu bonding. In this paper, the systematic investigation of these challenges and their possible solutions are presented. The methods used in this study include thermocompression (TC) bonding, X-ray photoelectron spectroscopy (XPS), shear strength testing, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The results indicate nearly no Cu oxidation (4 at.%) for samples with SAM passivation in contrast to the bare Cu surface (27 at.%) after the storage at -18 °C in a conventional freezer for three weeks. Significant improvement was observed in the TC bonding with SAM after storage. The mean shear strength of the passivated samples reached 65.5 MPa without storage. The average shear strength values before and after the storage tests were 43% greater for samples with SAM than for the bare Cu surface. In conclusion, this study shows that Cu-Cu bonding technology can be improved by using SAM as an oxidation inhibitor, leading to a higher interconnect quality.

3.
ACS Omega ; 8(1): 457-463, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643520

RESUMEN

The wafer-scale single-crystal GaN film was transferred from a commercial bulk GaN wafer onto a Si (100) substrate by combining ion-cut and surface-activated bonding. Well-defined, uniformly thick, and large-scale wafer size ReS2 multilayers were grown on the GaN substrate. Finally, ReS2 photodetectors were fabricated on GaN and sapphire substrates, respectively, and their performances were compared. Due to the polarization effect of GaN, the ReS2/GaN photodetector showed better performance. The ReS2/GaN photodetector has a responsivity of 40.12 A/W, while ReS2/sapphire has a responsivity of 0.17 A/W. In addition, the ReS2/GaN photodetector properties have reached an excellent reasonable level, including a photoconductive gain of 447.30, noise-equivalent power of 1.80 × 10-14 W/Hz1/2, and detectivity of 1.21 × 1010 Jones. This study expands the way to enhance the performance of ReS2 photodetectors.

5.
Drug Deliv Transl Res ; 12(2): 435-443, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34739717

RESUMEN

Minimally invasive biosensing using microneedles (MNs) is a desirable technology for continuous healthcare monitoring. Among a wide range of MNs, porous MNs are expected to be applied for sampling of interstitial fluids (ISF) by connecting the internal tissue to external measurement devices. In order to realize a continuous measurement of biomarkers in ISF through porous MNs, their integration with a microfluidic chip is a promising approach due to its applicability to micro-total analysis system (µTAS) technology. In this study, we developed a fluidic system to directly interface porous MNs to a microfluidic chip consisting of a capillary pump for the continuous sampling of ISF. The porous and flexible MNs made of PDMS are connected to the microfluidic chip fabricated by standard microelectro-mechanical system (MEMS) processes, showing a continuous flow of phosphate buffered saline (PBS). The developed device will lead to the minimally invasive and continuous biosampling for long-term healthcare monitoring.


Asunto(s)
Líquido Extracelular , Microfluídica , Agujas , Porosidad , Piel
6.
ACS Appl Mater Interfaces ; 13(27): 31843-31851, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34191480

RESUMEN

Thermal resistances from interfaces impede heat dissipation in micro/nanoscale electronics, especially for high-power electronics. Despite the growing importance of understanding interfacial thermal transport, advanced thermal characterization techniques that can visualize thermal conductance across buried interfaces, especially for nonmetal-nonmetal interfaces, are still under development. This work reports a dual-modulation-frequency time-domain thermoreflectance (TDTR) mapping technique (1.61 and 9.3 MHz) to visualize the thermal conduction across buried semiconductor interfaces for ß-Ga2O3-SiC samples. Both the ß-Ga2O3 thermal conductivity and the buried ß-Ga2O3-SiC thermal boundary conductance (TBC) are visualized for an area of 200 × 200 µm simultaneously. Areas with low TBC values (≤20 MW/m2·K) are identified on the TBC map, which correspond to weakly bonded interfaces caused by high-temperature annealing. Additionally, the steady-state temperature rise induced by the TDTR laser, usually ignored in TDTR analysis, is found to be able to probe TBC variations of the buried interfaces without the typical limit of thermal penetration depth. This technique can be applied to detect defects/voids in deeply buried heterogeneous interfaces nondestructively and also opens a door for the visualization of thermal conductance in nanoscale nonhomogeneous structures.

7.
Micromachines (Basel) ; 12(5)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066359

RESUMEN

A novel bonding process using Ag agglomerates paste prepared by Ag2O reduction has been proposed, which solved the problem of Cu substrate oxidation in the conventional Ag2O sintering process for Cu-Cu bonding. By applying the Ag agglomerate paste to Ag-Ag bonding, a shear strength of 28.3 MPa at 150 °C was obtained. Further studies showed that the optimum sintering temperature was at 225 °C, and a shear strength of 46.4 MPa was obtained. In addition, a shear strength of 20 MPa was obtained at 225 °C for Cu-Cu bonding. Compared to common Ag pastes, the results in this paper revealed that the sintering behavior of Ag agglomerates was unique, and the sintering mechanisms for Ag-Ag and Cu-Cu bonding were also discussed.

8.
Sci Rep ; 11(1): 7729, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833354

RESUMEN

Why can beetles such as the ladybird beetle Coccinella septempunctata walk vertically or upside-down on a smooth glass plane? Intermolecular and/or capillary forces mediated by a secretion fluid on the hairy footpads have commonly been considered the predominant adhesion mechanism. However, the main contribution of physical phenomena to the resulting overall adhesive force has yet to be experimentally proved, because it is difficult to quantitatively analyse the pad secretion which directly affects the adhesion mechanism. We observed beetle secretion fluid by using inverted optical microscopy and cryo-scanning electron microscopy, which showed the fluid secretion layer and revealed that the contact fluid layer between the footpad and substrate was less than 10-20 nm thick, thus indicating the possibility of contribution of intermolecular forces. If intermolecular force is the main physical phenomenon of adhesion, the force will be proportional to the work of adhesion, which can be described by the sum of the square roots of dispersive and polar parts of surface free energy. We measured adhesion forces of ladybird beetle footpads to flat, smooth substrates with known surface free energies. The adhesive force was proportional to the square-root of the dispersive component of the substrate surface free energy and was not affected by the polar component. Therefore, intermolecular forces are the main adhesive component of the overall adhesion force of the ladybird beetle. The footpads adhere more strongly to surfaces with higher dispersive components, such as wax-covered plant leaves found in the natural habitat of ladybird beetles. Based on the present findings, we assume ladybird beetles have developed this improved performance as an adaptation to the variety of plant species in its habitat.

9.
ACS Appl Mater Interfaces ; 12(40): 44943-44951, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32909730

RESUMEN

The ultrawide band gap, high breakdown electric field, and large-area affordable substrates make ß-Ga2O3 promising for applications of next-generation power electronics, while its thermal conductivity is at least 1 order of magnitude lower than other wide/ultrawide band gap semiconductors. To avoid the degradation of device performance and reliability induced by the localized Joule-heating, proper thermal management strategies are essential, especially for high-power high-frequency applications. This work reports a scalable thermal management strategy to heterogeneously integrate wafer-scale monocrystalline ß-Ga2O3 thin films on high thermal conductivity SiC substrates by the ion-cutting technique and room-temperature surface-activated bonding technique. The thermal boundary conductance (TBC) of the ß-Ga2O3-SiC interfaces and thermal conductivity of the ß-Ga2O3 thin films were measured by time-domain thermoreflectance to evaluate the effects of interlayer thickness and thermal annealing. Materials characterizations were performed to understand the mechanisms of thermal transport in these structures. The results show that the ß-Ga2O3-SiC TBC values are reasonably high and increase with decreasing interlayer thickness. The ß-Ga2O3 thermal conductivity increases more than twice after annealing at 800 °C because of the removal of implantation-induced strain in the films. A Callaway model is built to understand the measured thermal conductivity. Small spot-to-spot variations of both TBC and Ga2O3 thermal conductivity confirm the uniformity and high quality of the bonding and exfoliation. Our work paves the way for thermal management of power electronics and provides a platform for ß-Ga2O3-related semiconductor devices with excellent thermal dissipation.

10.
Micromachines (Basel) ; 11(5)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349451

RESUMEN

Au-Au surface activated bonding (SAB) using ultrathin Au films is effective for room-temperature pressureless wafer bonding. This paper reports the effect of the film thickness (15-500 nm) and surface roughness (0.3-1.6 nm) on room-temperature pressureless wafer bonding and sealing. The root-mean-square surface roughness and grain size of sputtered Au thin films on Si and glass wafers increased with the film thickness. The bonded area was more than 85% of the total wafer area when the film thickness was 100 nm or less and decreased as the thickness increased. Room-temperature wafer-scale vacuum sealing was achieved when Au thin films with a thickness of 50 nm or less were used. These results suggest that Au-Au SAB using ultrathin Au films is useful in achieving room-temperature wafer-level hermetic and vacuum packaging of microelectromechanical systems and optoelectronic devices.

11.
ACS Appl Mater Interfaces ; 12(7): 8376-8384, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31986013

RESUMEN

The wide bandgap, high-breakdown electric field, and high carrier mobility makes GaN an ideal material for high-power and high-frequency electronics applications, such as wireless communication and radar systems. However, the performance and reliability of GaN-based high-electron-mobility transistors (HEMTs) are limited by the high channel temperature induced by Joule heating in the device channel. Integration of GaN with high thermal conductivity substrates can improve the heat extraction from GaN-based HEMTs and lower the operating temperature of the device. However, heterogeneous integration of GaN with diamond substrates presents technical challenges to maximize the heat dissipation potential brought by the ultrahigh thermal conductivity of diamond substrates. In this work, two modified room-temperature surface-activated bonding (SAB) techniques are used to bond GaN and single-crystal diamond. Time-domain thermoreflectance (TDTR) is used to measure the thermal properties from room temperature to 480 K. A relatively large thermal boundary conductance (TBC) of the GaN/diamond interfaces with a ∼4 nm interlayer (∼90 MW/(m2 K)) was observed and material characterization was performed to link the interfacial structure with the TBC. Device modeling shows that the measured TBC of the bonded GaN/diamond interfaces can enable high-power GaN devices by taking full advantage of the ultrahigh thermal conductivity of single-crystal diamond. For the modeled devices, the power density of GaN-on-diamond can reach values ∼2.5 times higher than that of GaN-on-SiC and ∼5.4 times higher than that of GaN-on-Si with a maximum device temperature of 250 °C. Our work sheds light on the potential for room-temperature heterogeneous integration of semiconductors with diamond for applications of electronics cooling, especially for GaN-on-diamond devices.

12.
Micromachines (Basel) ; 10(10)2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547592

RESUMEN

Wafer bonding of a silicon carbide (SiC) diaphragm to a patterned SiC substrate coated with aluminum nitride (AlN) film as an insulating layer is a promising choice to fabricate an all-SiC capacitive pressure sensor. To demonstrate the bonding feasibility, a crystalline AlN film with a root-mean-square (RMS) surface roughness less than ~0.70 nm was deposited on a SiC wafer by a pulsed direct current magnetron sputtering method. Room temperature wafer bonding of SiC-AlN by two surface activated bonding (SAB) methods (standard SAB and modified SAB with Si nano-layer sputtering deposition) was studied. Standard SAB failed in the bonding, while the modified SAB achieved the bonding with a bonding energy of ~1.6 J/m2. Both the microstructure and composition of the interface were investigated to understand the bonding mechanisms. Additionally, the surface analyses were employed to confirm the interface investigation. Clear oxidation of the AlN film was found, which is assumed to be the failure reason of direct bonding by standard SAB.

13.
ACS Appl Mater Interfaces ; 11(36): 33428-33434, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31408316

RESUMEN

High-power GaN-based electronics are limited by high channel temperatures induced by self-heating, which degrades device performance and reliability. Increasing the thermal boundary conductance (TBC) between GaN and SiC will aid in the heat dissipation of GaN-on-SiC devices by taking advantage of the high thermal conductivity of SiC substrates. For the typical growth method, there are issues concerning the transition layer at the interface and low-quality GaN adjacent to the interface, which impedes heat flow. In this work, a room-temperature bonding method is used to bond high-quality GaN to SiC directly, which allows for the direct integration of high-quality GaN with SiC to create a high TBC interface. Time-domain thermoreflectance is used to measure the GaN thermal conductivity and GaN-SiC TBC. The measured GaN thermal conductivity is larger than that of grown GaN-on-SiC by molecular beam epitaxy. High TBC is observed for the bonded GaN-SiC interfaces, especially for the annealed interface (∼230 MW m-2 K-1, close to the highest value ever reported). Thus, this work provides the benefit of both a high TBC and higher GaN thermal conductivity, which will impact the GaN-device integration with substrates in which thermal dissipation always plays an important role. Additionally, simultaneous thermal and structural characterizations of heterogeneous bonded interfaces are performed to understand the structure-thermal property relation across this new type of interface.

14.
Micromachines (Basel) ; 10(5)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121955

RESUMEN

High-precision aligned wafer bonding is essential to heterogeneous integration, with the device dimension reduced continuously. To get the alignment more accurately and conveniently, we propose a moiré-based alignment method using centrosymmetric grating marks. This method enables both coarse and fine alignment steps without requiring additional conventional cross-and-box alignment marks. Combined with an aligned wafer bonding system, alignment accuracy better than 300 nm (3σ) was achieved after bonding. Furthermore, the working principle of the moiré-based alignment for the backside alignment system was proposed to overcome the difficulty in bonding of opaque wafers. We believe this higher alignment accuracy is feasible to satisfy more demanding requirements in wafer-level stacking technologies.

15.
Micromachines (Basel) ; 10(2)2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781779

RESUMEN

Au⁻Au surface activated bonding is promising for room-temperature bonding. The use of Ar plasma vs. O2 plasma for pretreatment was investigated for room-temperature wafer-scale Au⁻Au bonding using ultrathin Au films (<50 nm) in ambient air. The main difference between Ar plasma and O2 plasma is their surface activation mechanism: physical etching and chemical reaction, respectively. Destructive razor blade testing revealed that the bonding strength of samples obtained using Ar plasma treatment was higher than the strength of bulk Si (surface energy of bulk Si: 2.5 J/m²), while that of samples obtained using O2 plasma treatment was low (surface energy: 0.1⁻0.2 J/m²). X-ray photoelectron spectroscopy analysis revealed that a gold oxide (Au2O3) layer readily formed with O2 plasma treatment, and this layer impeded Au⁻Au bonding. Thermal desorption spectroscopy analysis revealed that Au2O3 thermally desorbed around 110 °C. Annealing of O2 plasma-treated samples up to 150 °C before bonding increased the bonding strength from 0.1 to 2.5 J/m² due to Au2O3 decomposition.

16.
ACS Appl Mater Interfaces ; 9(33): 27365-27371, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28792726

RESUMEN

Single-crystal cubic silicon carbide has attracted great attention for MEMS and electronic devices. However, current leakage at the SiC/Si junction at high temperatures and visible-light absorption of the Si substrate are main obstacles hindering the use of the platform in a broad range of applications. To solve these bottlenecks, we present a new platform of single crystal SiC on an electrically insulating and transparent substrate using an anodic bonding process. The SiC thin film was prepared on a 150 mm Si with a surface roughness of 7 nm using LPCVD. The SiC/Si wafer was bonded to a glass substrate and then the Si layer was completely removed through wafer polishing and wet etching. The bonded SiC/glass samples show a sharp bonding interface of less than 15 nm characterized using deep profile X-ray photoelectron spectroscopy, a strong bonding strength of approximately 20 MPa measured from the pulling test, and relatively high optical transparency in the visible range. The transferred SiC film also exhibited good conductivity and a relatively high temperature coefficient of resistance varying from -12 000 to -20 000 ppm/K, which is desirable for thermal sensors. The biocompatibility of SiC/glass was also confirmed through mouse 3T3 fibroblasts cell-culturing experiments. Taking advantage of the superior electrical properties and biocompatibility of SiC, the developed SiC-on-glass platform offers unprecedented potentials for high-temperature electronics as well as bioapplications.


Asunto(s)
Temperatura , Animales , Línea Celular , Electrodos , Vidrio , Ratones , Espectroscopía de Fotoelectrones
17.
Lab Chip ; 13(6): 1048-52, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23377319

RESUMEN

A technical bottleneck to the broadening of applications of glass nanofluidic chips is bonding, due to the strict conditions, especially the extremely high temperatures (~1000 °C) and the high vacuum required in the current glass-to-glass fusion bonding method. Herein, we report a strong, nanostructure-friendly, and high pressure-resistant bonding method, performed at room temperature (RT, ~25 °C) for glass nanofluidic chips, using a one-step surface activation process with an O(2)/CF(4) gas mixture plasma treatment. The developed RT bonding method is believed to be able to conquer the technical bottleneck in bonding in nanofluidic fields.

18.
Anal Bioanal Chem ; 402(3): 1011-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22134493

RESUMEN

Owing to the well-established nanochannel fabrication technology in 2D nanoscales with high resolution, reproducibility, and flexibility, glass is the leading, ideal, and unsubstitutable material for the fabrication of nanofluidic chips. However, high temperature (~1,000 °C) and a vacuum condition are usually required in the conventional fusion bonding process, unfortunately impeding the nanofluidic applications and even the development of the whole field of nanofluidics. We present a direct bonding of fused silica glass nanofluidic chips at low temperature, around 200 °C in ambient air, through a two-step plasma surface activation process which consists of an O(2) reactive ion etching plasma treatment followed by a nitrogen microwave radical activation. The low-temperature bonded glass nanofluidic chips not only had high bonding strength but also could work continuously without leakage during liquid introduction driven by air pressure even at 450 kPa, a very high pressure which can meet the requirements of most nanofluidic operations. Owing to the mild conditions required in the bonding process, the method has the potential to allow the integration of a range of functional elements into nanofluidic chips during manufacture, which is nearly impossible in the conventional high-temperature fusion bonding process. Therefore, we believe that the developed low-temperature bonding would be very useful and contribute to the field of nanofluidics.


Asunto(s)
Vidrio/química , Técnicas Analíticas Microfluídicas/instrumentación , Dióxido de Silicio/química , Diseño de Equipo , Propiedades de Superficie , Temperatura
19.
Opt Express ; 19(17): 15739-49, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21934936

RESUMEN

The air-gap structure between integrated LiNbO(3) optical modulators and micromachined Si substrates is reported for high-speed optoelectronic systems. The calculated and experimental results show that the high permittivity of the Si substrate decreases the resonant modulation frequency to 10 GHz LiNbO(3) resonant-type optical modulator chips on the Si substrate. To prevent this substrate effect, an air-gap was formed between the LiNbO(3) modulator and the Si substrate. The ability to fabricate the air-gap structure was demonstrated using low-temperature flip-chip bonding (100 °C) and a Si micromachining process, and its performance was experimentally verified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...