Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37158588

RESUMEN

Sorting nexins (SNX) are a family of proteins containing the Phox homology domain, which shows a preferential endo-membrane association and regulates cargo sorting processes. Here, we established that SNX32, an SNX-BAR (Bin/Amphiphysin/Rvs) sub-family member associates with SNX4 via its BAR domain and the residues A226, Q259, E256, R366 of SNX32, and Y258, S448 of SNX4 that lie at the interface of these two SNX proteins mediate this association. SNX32, via its PX domain, interacts with the transferrin receptor (TfR) and Cation-Independent Mannose-6-Phosphate Receptor (CIMPR), and the conserved F131 in its PX domain is important in stabilizing these interactions. Silencing of SNX32 leads to a defect in intracellular trafficking of TfR and CIMPR. Further, using SILAC-based differential proteomics of the wild-type and the mutant SNX32, impaired in cargo binding, we identified Basigin (BSG), an immunoglobulin superfamily member, as a potential interactor of SNX32 in SHSY5Y cells. We then demonstrated that SNX32 binds to BSG through its PX domain and facilitates its trafficking to the cell surface. In neuroglial cell lines, silencing of SNX32 leads to defects in neuronal differentiation. Moreover, abrogation in lactate transport in the SNX32-depleted cells led us to propose that SNX32 may contribute to maintaining the neuroglial coordination via its role in BSG trafficking and the associated monocarboxylate transporter activity. Taken together, our study showed that SNX32 mediates the trafficking of specific cargo molecules along distinct pathways.


Asunto(s)
Endosomas , Proyección Neuronal , Endosomas/metabolismo , Transporte de Proteínas , Membrana Celular/metabolismo , Nexinas de Clasificación/metabolismo
2.
J Biol Chem ; 297(6): 101422, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34798070

RESUMEN

ARL5B, an ARF-like small GTPase localized to the trans-Golgi, is known for regulating endosome-Golgi trafficking and promoting the migration and invasion of breast cancer cells. Although a few interacting partners have been identified, the mechanism of the shuttling of ARL5B between the Golgi membrane and the cytosol is still obscure. Here, using GFP-binding protein (GBP) pull-down followed by mass spectrometry, we identified heat shock cognate protein (HSC70) as an additional interacting partner of ARL5B. Our pull-down and isothermal titration calorimetry (ITC)-based studies suggested that HSC70 binds to ARL5B in an ADP-dependent manner. Additionally, we showed that the N-terminal helix and the nucleotide status of ARL5B contribute to its recognition by HSC70. The confocal microscopy and cell fractionation studies in MDA-MB-231 breast cancer cells revealed that the depletion of HSC70 reduces the localization of ARL5B to the Golgi. Using in vitro reconstitution approach, we provide evidence that HSC70 fine-tunes the association of ARL5B with Golgi membrane. Finally, we demonstrated that the interaction between ARL5B and HSC70 is important for the localization of cation independent mannose-6-phosphate receptor (CIMPR) at Golgi. Collectively, we propose a mechanism by which HSC70, a constitutively expressed chaperone, modulates the Golgi association of ARL5B, which in turn has implications for the Golgi-associated functions of this GTPase.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Aparato de Golgi/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Factores de Ribosilacion-ADP/genética , Aparato de Golgi/genética , Células HEK293 , Proteínas del Choque Térmico HSC70/genética , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Unión Proteica
3.
J Cell Sci ; 130(16): 2707-2721, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28705836

RESUMEN

The endosomal protein-sorting machineries play vital roles in diverse physiologically important cellular processes. Much of the core membrane-sorting apparatus is conserved in evolution, such as retromer, which is involved in the recycling of a diverse set of cargoes via the retrograde trafficking route. Here, in an RNAi-based loss-of-function study, we identified that suppression of SNX12 leads to a severe blockage in CIM6PR (also known as IGF2R) transport and alters the morphology of the endocytic compartments. We demonstrate that SNX12 is involved in the early phase of CIM6PR transport, and mediates receptor recycling upstream of the other well-established SNX components of retromer. Ultra-structural analysis revealed that SNX12 resides on tubulo-vesicular structures, despite it lacking a BAR domain. Furthermore, we illustrate that SNX12 plays a key role in intraluminal vesicle formation and in the maturation of a subpopulation of early endosomes into late endosomes, thereby regulating selective endocytic transport of cargo for degradation. This study therefore provides evidence for the existence of early endosomal subpopulations that have differential roles in the sorting of the cargoes along endocytic degradative pathways.


Asunto(s)
Endocitosis/genética , Endosomas/metabolismo , Nexinas de Clasificación/fisiología , Transporte Biológico/genética , LDL-Colesterol/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Células HeLa , Humanos , Redes y Vías Metabólicas/genética , Transporte de Proteínas/genética , Proteolisis , Estabilidad del ARN , Nexinas de Clasificación/genética , Vesículas Transportadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA