Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Traffic ; 25(5): e12936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725127

RESUMEN

Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.


Asunto(s)
Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP , Endosomas , Factores de Intercambio de Guanina Nucleótido , Factor de Crecimiento Nervioso , Proyección Neuronal , Receptor trkA , Animales , Ratones , Ratas , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Endosomas/metabolismo , Ganglios Espinales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Ratones Noqueados , Factor de Crecimiento Nervioso/metabolismo , Células PC12 , Transporte de Proteínas , Receptor trkA/metabolismo
2.
J Hum Genet ; 69(3-4): 119-123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38200111

RESUMEN

IQSEC2 gene on chromosome Xq11.22 encodes a member of guanine nucleotide exchange factor (GEF) protein that is implicated in the activation of ADP-ribosylation factors (Arfs) at the postsynaptic density (PSD), and plays a crucial role in synaptic transmission and dendritic spine formation. Alterations in IQSEC2 have been linked to X-linked intellectual developmental disorders including epilepsy and behavioral abnormalities. Of interest, truncating variants at the C-terminus of IQSEC2 can cause severe phenotypes, akin to truncating variants located in other regions. Here, we present a 5-year-old boy with severe intellectual disability and progressive epilepsy. The individual carried a nonsense variant p.Q1227* in the last exon of the IQSEC2 gene that was supposed to escape nonsense-mediated mRNA decay, thereby leading to a translation of C-terminus truncated IQSEC2 protein with residual activity. The functional analyses showed that the GEF activity of IQSEC2 Q1227* was compromised, and that the IQSEC2 Q1227* lacked preferential synaptic localization due to the absence of functional domains for binding to scaffolding proteins in the PSD. The impaired GEF activity and disrupted synaptic localization of the mutant IQSEC2 protein could impact dendritic and spine development in neurons, potentially explaining the patient's severe neurological manifestations. Our findings indicate that C-terminal truncations in IQSEC2, previously not well-characterized, may have significant pathogenic implications.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Masculino , Humanos , Preescolar , Epilepsia/genética , Factores de Intercambio de Guanina Nucleótido/genética , Fenotipo , Neuronas/metabolismo , Discapacidad Intelectual/genética
3.
eNeuro ; 10(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37848288

RESUMEN

During the development of the cerebral cortex, N-cadherin plays a crucial role in facilitating radial migration by enabling cell-to-cell adhesion between migrating neurons and radial glial fibers or Cajar-Reztius cells. ADP ribosylation factor 4 (Arf4) and Arf5, which belong to the Class II Arf small GTPase subfamily, control membrane trafficking in the endocytic and secretory pathways. However, their specific contribution to cerebral cortex development remains unclear. In this study, we sought to investigate the functional involvement of Class II Arfs in radial migration during the layer formation of the cerebral cortex using mouse embryos and pups. Our findings indicate that knock-down of Arf4, but not Arf5, resulted in the stalling of transfected neurons with disorientation of the Golgi in the upper intermediate zone (IZ) and reduction in the migration speed in both the IZ and cortical plate (CP). Migrating neurons with Arf4 knock-down exhibited cytoplasmic accumulation of N-cadherin, along with disturbed organelle morphology and distribution. Furthermore, supplementation of exogenous N-cadherin partially rescued the migration defect caused by Arf4 knock-down. In conclusion, our results suggest that Arf4 plays a crucial role in regulating radial migration via N-cadherin trafficking during cerebral cortical development.


Asunto(s)
Cadherinas , Neuronas , Animales , Ratones , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Movimiento Celular/fisiología , Corteza Cerebral/metabolismo , Aparato de Golgi/metabolismo , Neuronas/metabolismo
4.
Neurobiol Dis ; 159: 105466, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34390832

RESUMEN

Group I metabotropic glutamate receptors (mGluRs), mGluR1 and mGluR5, in the spinal cord are implicated in nociceptive transmission and plasticity through G protein-mediated second messenger cascades leading to the activation of various protein kinases such as extracellular signal-regulated kinase (ERK). In this study, we demonstrated that cytohesin-2, a guanine nucleotide exchange factor for ADP ribosylation factors (Arfs), is abundantly expressed in subsets of excitatory interneurons and projection neurons in the superficial dorsal horn. Cytohesin-2 is enriched in the perisynapse on the postsynaptic membrane of dorsal horn neurons and forms a protein complex with mGluR5 in the spinal cord. Central nervous system-specific cytohesin-2 conditional knockout mice exhibited reduced mechanical allodynia in inflammatory and neuropathic pain models. Pharmacological blockade of cytohesin catalytic activity with SecinH3 similarly reduced mechanical allodynia and inhibited the spinal activation of Arf6, but not Arf1, in both pain models. Furthermore, cytohesin-2 conditional knockout mice exhibited reduced mechanical allodynia and ERK1/2 activation following the pharmacological activation of spinal mGluR1/5 with 3,5-dihydroxylphenylglycine (DHPG). The present study suggests that cytothesin-2 is functionally associated with mGluR5 during the development of mechanical allodynia through the activation of Arf6 in spinal dorsal horn neurons.


Asunto(s)
Factor 6 de Ribosilación del ADP/metabolismo , Proteínas Activadoras de GTPasa/genética , Hiperalgesia/genética , Neuralgia/genética , Células del Asta Posterior/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Médula Espinal/metabolismo , Factor 1 de Ribosilacion-ADP/efectos de los fármacos , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 6 de Ribosilación del ADP/efectos de los fármacos , Animales , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Proteínas Activadoras de GTPasa/metabolismo , Hiperalgesia/metabolismo , Inflamación/genética , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Noqueados , Neuralgia/metabolismo , Densidad Postsináptica/metabolismo , Células del Asta Posterior/efectos de los fármacos , Receptor del Glutamato Metabotropico 5/agonistas , Receptores de Glutamato Metabotrópico/agonistas , Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal , Triazoles/farmacología
5.
Brain Res ; 1745: 146905, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32473257

RESUMEN

ADP ribosylation factor 6 (Arf6) is a small GTP-binding protein implicated in neuronal morphogenesis through endosomal trafficking and actin remodeling. In this study, we identified Vps52, a core subunit of the Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, as a novel Arf6-binding protein by yeast two-hybrid screening. Vps52 interacted specifically with GTP-bound Arf6 among the Arf family. Immunohistochemical analyses of hippocampal pyramidal cells revealed that fine punctate immunolabeling for Vps52 was distributed throughout neuronal compartments, most densely in the cell body and dendritic shafts, and was largely associated with trans-Golgi network and vesicular endomembranes. In cultured hippocampal neurons, knockdown of Vps52 increased total length of axons and dendrites; these phenotypes were completely restored by co-expression of shRNA-resistant full-length Vps52. However, co-expression of a Vps52 mutant lacking the ability to interact with Arf6 restored only the Vps52-knockdown phenotype of the dendritic length. The present findings suggest that Vps52 is a novel Arf6-interacting protein that regulates neurite outgrowth in hippocampal neurons.


Asunto(s)
Proyección Neuronal/fisiología , Neuronas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Animales , Hipocampo/metabolismo , Complejo Mayor de Histocompatibilidad , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR
6.
J Neurosci ; 40(22): 4277-4296, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341099

RESUMEN

Brefeldin A-resistant ArfGEF 2 (BRAG2) [or Iqsec1 (IQ motif and Sec7 domain-containing protein 1)] is a guanine nucleotide exchange factor for ADP ribosylation factor 6 (Arf6), a small GTPase implicated in the membrane trafficking between the plasma membrane and endosomes. BRAG2 regulates Arf6-dependent endocytosis of AMPA receptors (AMPARs) through the direct interaction during the hippocampal long-term depression. However, the molecular mechanism by which the BRAG2-Arf6 pathway links AMPARs to the endocytic machinery remains elusive. Herein, using mouse brains of both sexes, we demonstrated that BRAG2a, an alternative isoform with a long C-terminal insert containing a proline-rich domain and type I PDZ-binding motif, was selectively localized to the excitatory postsynaptic density (PSD). Using yeast two-hybrid screening, we identified PSD-95 and endophilin 1/3 as BRAG2a-binding partners in the brain. The interaction with PSD-95 was required for synaptic targeting of BRAG2a. In cultured hippocampal neurons, stimulation of group I metabotropic glutamate receptors (mGluRs) increased the interaction of BRAG2a with endophilin 3 and concomitant Arf6 activation in a time-dependent manner. Knockdown of BRAG2 in cultured hippocampal neurons blocked the mGluR-dependent decrease in surface AMPAR levels, which was rescued by introducing wild-type BRAG2a, but not wild-type BRAG2b or BRAG2a mutants lacking the ability to activate Arf6 or to interact with endophilin 3 or PSD-95. Further postembedding immunoelectron microscopic analysis revealed the preorganized lateral distribution of BRAG2a, Arf6, and endophilin 3 for efficient endocytosis at the postsynaptic membrane. Together, the present findings unveiled a novel molecular mechanism by which BRAG2a links AMPARs to the clathrin-dependent endocytic pathway through its interaction with PSD-95 and endophilin 3.SIGNIFICANCE STATEMENT BRAG2/Iqsec1 is a GDP/GTP exchange factor for ADP ribosylation factor 6 (Arf6), a small GTPase implicated in the membrane trafficking between the plasma membrane and endosomes, and regulates Arf6-dependent endocytosis of AMPARs through direct interaction during hippocampal long-term depression, one of the mechanisms of synaptic plasticity related to learning and memory. However, the molecular mechanism by which the BRAG2-Arf6 pathway links AMPARs to the endocytic machinery remains elusive. Here, we identified isoform-specific mechanisms of BRAG2-mediated AMPAR internalization. We demonstrated that the interaction of BRAG2a isoform with PSD-95 and endophilin 3 was required for the mGluR-dependent decrease in surface AMPARs in hippocampal neurons. These results unveiled a novel molecular mechanism by which BRAG2 links AMPARs to the clathrin-mediated endocytic machinery at postsynaptic sites.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Densidad Postsináptica/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Endocitosis , Femenino , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Cobayas , Células HeLa , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Depresión Sináptica a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Densidad Postsináptica/fisiología , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Conejos , Receptores AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo
7.
PLoS One ; 14(5): e0216960, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31095630

RESUMEN

ADP ribosylation factor 6 (Arf6) is a small GTPase that regulates various neuronal events including formation of the axon, dendrites and dendritic spines, and synaptic plasticity through actin cytoskeleton remodeling and endosomal trafficking. EFA6C, also known as Psd2, is a guanine nucleotide exchange factor for Arf6 that is preferentially expressed in the cerebellar cortex of adult mice, particularly in Purkinje cells. However, the roles of EFA6C in cerebellar development and functions remain unknown. In this study, we generated global EFA6C knockout (KO) mice using the CRISPR/Cas9 system and investigated their cerebellar phenotypes by histological and behavioral analyses. Histological analyses revealed that EFA6C KO mice exhibited normal gross anatomy of the cerebellar cortex, in terms of the thickness and cellularity of each layer, morphology of Purkinje cells, and distribution patterns of parallel fibers, climbing fibers, and inhibitory synapses. Electron microscopic observation of the cerebellar molecular layer revealed that the density of asymmetric synapses of Purkinje cells was significantly lower in EFA6C KO mice compared with wild-type control mice. However, behavioral analyses using accelerating rotarod and horizontal optokinetic response tests failed to detect any differences in motor coordination, learning or adaptation between the control and EFA6C KO mice. These results suggest that EFA6C plays ancillary roles in cerebellar development and motor functions.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Cerebelo/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Actividad Motora , Células de Purkinje/citología , Sinapsis/fisiología , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Animales , Axones/metabolismo , Conducta Animal , Corteza Cerebelosa/metabolismo , Dendritas/metabolismo , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Cinética , Masculino , Ratones , Ratones Noqueados , Plasticidad Neuronal , Neuronas/metabolismo , Fenotipo
8.
Biochim Biophys Acta Gen Subj ; 1863(4): 672-680, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30660766

RESUMEN

BACKGROUND: Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) is a pivotal activator of CaMKI, CaMKIV and 5'-AMP-activated protein kinase (AMPK), controlling Ca2+-dependent intracellular signaling including various neuronal, metabolic and pathophysiological responses. Recently, we demonstrated that CaMKKß is feedback phosphorylated at Thr144 by the downstream AMPK, resulting in the conversion of CaMKKß into Ca2+/CaM-dependent enzyme. However, the regulatory phosphorylation of CaMKKß at Thr144 in intact cells and in vivo remains unclear. METHODS: Anti-phosphoThr144 antibody was used to characterize the site-specific phosphorylation of CaMKKß in immunoprecipitated samples from mouse cerebellum and in transfected mammalian cells that were treated with various agonists and protein kinase inhibitors. CaMKK activity assay and LC-MS/MS analysis were used for biochemical characterization of phosphorylated CaMKKß. RESULTS: Our data suggest that the phosphorylation of Thr144 in CaMKKß is rapidly induced by cAMP/cAMP-dependent protein kinase (PKA) signaling in CaMKKß-transfected HeLa cells, that is physiologically relevant in mouse cerebellum. We confirmed that the catalytic subunit of PKA was capable of directly phosphorylating CaMKKß at Thr144 in vitro and in transfected cells. In addition, the basal phosphorylation of CaMKKß at Thr144 in transfected HeLa cells was suppressed by AMPK inhibitor (compound C). PKA-catalyzed phosphorylation reduced the autonomous activity of CaMKKß in vitro without significant effect on the Ca2+/CaM-dependent activity, resulting in the conversion of CaMKKß into Ca2+/CaM-dependent enzyme. CONCLUSION: cAMP/PKA signaling may confer Ca2+-dependency to the CaMKKß-mediated signaling pathway through direct phosphorylation of Thr144 in intact cells. GENERAL SIGNIFICANCE: Our results suggest a novel cross-talk between cAMP/PKA and Ca2+/CaM/CaMKKß signaling through regulatory phosphorylation.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , AMP Cíclico/metabolismo , Transducción de Señal , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Fosforilación , Ratas , Proteínas Recombinantes/metabolismo
9.
Eur J Neurosci ; 48(9): 3082-3096, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30295969

RESUMEN

The class II Rab11 family-interacting proteins, FIP3 and FIP4, also termed Arfophilin-1 and Arfophilin-2, respectively, are endosomal proteins that function as dual effector proteins for Rab11 and ADP ribosylation factor (Arf) small GTPases. In the present study, we examined the expression and role of FIP4 in neuronal migration during cerebral layer formation. FIP4 mRNA was first weakly detected in post-mitotic migrating neurons in the upper intermediate zone, and expression was markedly increased in the cortical layer. Exogenously expressed FIP4 protein was localized to subpopulations of EEA1- and syntaxin 12-positive endosomes in migrating neurons, and was partially colocalized with FIP3. Knockdown of FIP4 by in utero electroporation significantly stalled transfected neurons in the lower cortical layer and decreased the speed of neuronal migration in the upper intermediate zone and in the cortical plate compared with control small hairpin RNA (shRNA)-transfected neurons. Furthermore, co-transfection of shRNA-resistant wild-type FIP4, but not wild type FIP3 or FIP4 mutants lacking the binding region for Rab11 or Arf, significantly improved the disturbed cortical layer formation caused by FIP4 knockdown. Collectively, our findings suggest that FIP4 and FIP3 play overlapping but distinct roles in neuronal migration downstream of Arf and Rab11 during cortical layer formation.


Asunto(s)
Proteínas Portadoras/fisiología , Movimiento Celular/fisiología , Corteza Cerebral/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Proteínas de Unión al Calcio , Corteza Cerebral/química , Corteza Cerebral/citología , Femenino , Ratones , Ratones Endogámicos ICR , Neurogénesis/fisiología , Neuronas/química , Embarazo
10.
J Neurochem ; 147(2): 153-177, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30151872

RESUMEN

Cytohesin-2 is a member of the guanine nucleotide exchange factors for ADP ribosylation factor 1 (Arf1) and Arf6, which are small GTPases that regulate membrane traffic and actin dynamics. In this study, we first demonstrated that cytohesin-2 localized to the plasma membrane and vesicles in various subcellular compartment in hippocampal neurons by immunoelectron microscopy. Next, to understand the molecular network of cytohesin-2 in neurons, we conducted yeast two-hybrid screening of brain cDNA libraries using cytohesin-2 as bait and isolated pallidin, a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1) involved in endosomal trafficking. Pallidin interacted specifically with cytohesin-2 among cytohesin family members. Glutathione S-transferase pull-down and immunoprecipitation assays further confirmed the formation of a protein complex between cytohesin-2 and pallidin. Immunofluorescence demonstrated that cytohesin-2 and pallidin partially colocalized in various subsets of endosomes immunopositive for EEA1, syntaxin 12, and LAMP2 in hippocampal neurons. Knockdown of pallidin or cytohesin-2 reduced cytoplasmic EEA1-positive early endosomes. Furthermore, knockdown of pallidin increased the total dendritic length of cultured hippocampal neurons, which was rescued by co-expression of wild-type pallidin but not a mutant lacking the ability to interact with cytohesin-2. In contrast, knockdown of cytohesin-2 had the opposite effect on total dendritic length. The present results suggested that the interaction between pallidin and cytohesin-2 may participate in various neuronal functions such as endosomal trafficking and dendritic formation in hippocampal neurons. Cover Image for this issue: doi: 10.1111/jnc.14197.


Asunto(s)
Proteínas Portadoras/fisiología , Dendritas/fisiología , Endosomas/fisiología , Proteínas Activadoras de GTPasa/fisiología , Lectinas/fisiología , Neuronas/fisiología , Animales , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Células Cultivadas , Vesículas Citoplasmáticas/metabolismo , Dendritas/ultraestructura , Endosomas/genética , Proteínas Activadoras de GTPasa/genética , Técnicas de Silenciamiento del Gen , Glutatión Transferasa/metabolismo , Células HeLa , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lectinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Neuronas/ultraestructura
11.
Proc Natl Acad Sci U S A ; 114(26): E5256-E5265, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28607044

RESUMEN

Dendritic spines of Purkinje cells form excitatory synapses with parallel fiber terminals, which are the primary sites for cerebellar synaptic plasticity. Nevertheless, how density and morphology of these spines are properly maintained in mature Purkinje cells is not well understood. Here we show an activity-dependent mechanism that represses excessive spine development in mature Purkinje cells. We found that CaMKIIß promotes spine formation and elongation in Purkinje cells through its F-actin bundling activity. Importantly, activation of group I mGluR, but not AMPAR, triggers PKC-mediated phosphorylation of CaMKIIß, which results in dissociation of the CaMKIIß/F-actin complex. Defective function of the PKC-mediated CaMKIIß phosphorylation promotes excess F-actin bundling and leads to abnormally numerous and elongated spines in mature IP3R1-deficient Purkinje cells. Thus, our data suggest that phosphorylation of CaMKIIß through the mGluR/IP3R1/PKC signaling pathway represses excessive spine formation and elongation in mature Purkinje cells.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Espinas Dendríticas/metabolismo , Proteína Quinasa C/metabolismo , Células de Purkinje/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/fisiología , Actinas/genética , Actinas/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Espinas Dendríticas/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Ratones Noqueados , Fosforilación/genética , Proteína Quinasa C/genética , Células de Purkinje/citología , Receptores de Glutamato Metabotrópico/genética
12.
Front Neural Circuits ; 7: 156, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24109434

RESUMEN

The type 1 inositol 1,4,5- trisphosphate receptor (IP3R1) is a Ca(2+) channel on the endoplasmic reticulum and is a predominant isoform in the brain among the three types of IP3Rs. Mice lacking IP3R1 show seizure-like behavior; however the cellular and neural circuit mechanism by which IP3R1 deletion causes the abnormal movements is unknown. Here, we found that the conditional knockout mice lacking IP3R1 specifically in the cerebellum and brainstem experience dystonia and show that cerebellar Purkinje cell (PC) firing patterns were coupled to specific dystonic movements. Recordings in freely behaving mice revealed epochs of low and high frequency PC complex spikes linked to body extension and rigidity, respectively. Remarkably, dystonic symptoms were independent of the basal ganglia, and could be rescued by inactivation of the cerebellum, inferior olive or in the absence of PCs. These findings implicate IP3R1-dependent PC firing patterns in cerebellum in motor coordination and the expression of dystonia through the olivo-cerebellar pathway.


Asunto(s)
Potenciales de Acción/fisiología , Ganglios Basales/fisiopatología , Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Distonía/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células de Purkinje/fisiología , Animales , Ganglios Basales/metabolismo , Tronco Encefálico/fisiopatología , Cerebelo/fisiopatología , Distonía/genética , Distonía/fisiopatología , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones Noqueados
13.
J Neurosci ; 33(30): 12186-96, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23884927

RESUMEN

The structural maintenance of neural circuits is critical for higher brain functions in adulthood. Although several molecules have been identified as regulators for spine maintenance in hippocampal and cortical neurons, it is poorly understood how Purkinje cell (PC) spines are maintained in the mature cerebellum. Here we show that the calcium channel type 1 inositol trisphosphate receptor (IP3R1) in PCs plays a crucial role in controlling the maintenance of parallel fiber (PF)-PC synaptic circuits in the mature cerebellum in vivo. Significantly, adult mice lacking IP3R1 specifically in PCs (L7-Cre;Itpr1(flox/flox)) showed dramatic increase in spine density and spine length of PCs, despite having normal spines during development. In addition, the abnormally rearranged PF-PC synaptic circuits in mature cerebellum caused unexpectedly severe ataxia in adult L7-Cre;Itpr1(flox/flox) mice. Our findings reveal a specific role for IP3R1 in PCs not only as an intracellular mediator of cerebellar synaptic plasticity induction, but also as a critical regulator of PF-PC synaptic circuit maintenance in the mature cerebellum in vivo; this mechanism may underlie motor coordination and learning in adults.


Asunto(s)
Ataxia Cerebelosa/fisiopatología , Cerebelo/fisiología , Espinas Dendríticas/fisiología , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células de Purkinje/fisiología , Animales , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Cerebelo/citología , Cerebelo/patología , Quimera , Espinas Dendríticas/patología , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Mutantes , Plasticidad Neuronal/fisiología , Nistagmo Optoquinético/fisiología , Células de Purkinje/citología , Células de Purkinje/ultraestructura , Reflejo Vestibuloocular/fisiología , Sinapsis/fisiología
14.
Physiol Behav ; 83(3): 373-6, 2004 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-15581658

RESUMEN

A new heat escape behavior was revealed in mice (ddY mice) under acute heat stress conditions. Mice in a fully covered cage were exposed to 24, 34, 37 and 38.5 degrees C for 60 min. Rectal temperature increased in conditions above 34 degrees C. Furthermore, serum osmolality and body weight loss also increased in conditions above 37 degrees C. At above 37 degrees C, a large number of mice attempted to escape from the partially covered cage, and so exhibited jumping behavior during a period of 60 min. However, mice exposed to 24 and 34 degrees C did not exhibit such behavior. These results indicated that acute heat stress above 37 degrees C induced evaporative water loss and jumping escape behavior in mice.


Asunto(s)
Trastornos de Estrés por Calor/fisiopatología , Temperatura , Análisis de Varianza , Animales , Conducta Animal , Peso Corporal/fisiología , Reacción de Fuga/fisiología , Trastornos de Estrés por Calor/sangre , Hematócrito/métodos , Masculino , Ratones , Concentración Osmolar , Suero/fisiología , Factores de Tiempo
15.
Brain Res Bull ; 61(6): 617-26, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-14519459

RESUMEN

Hyperthermia and dehydration were important physiological phenomena in heat stress. But, the degrees of these phenomena were changed by heat stress conditions, and the distinction between both phenomena is necessary for investigation of response for individual phenomenon. Heat stress at 34 degrees C for 60 min increased rectal temperature, and heat stress at 38.5 degrees C for 60 min further increased rectal temperature and increased osmolality in mice. We investigated the activated region in hypothalamus, which played a role in thermoregulation, fluid regulation and so on, using immunostaining for Fos protein under these conditions in conscious mice. At 34 degrees C, Fos-positive neurons increased in the median preoptic nucleus, lateral preoptic area and anterior hypothalamic area, which were known to be the thermoregulatory center, and the dorsomedial hypothalamic nucleus, which was known to control eating. At 38.5 degrees C, Fos-positive neurons further increased in the regions mentioned above and appeared in the lateral septal nucleus, medial preoptic area, lateral hypothalamic area and zona incerta, which were thought to be involved in thermoregulation and/or fluid regulation, and the paraventricular hypothalamic nucleus, supraoptic nucleus and supraoptic nucleus in the retrochiasmatic part, which were known to be involved in neuroendocrine effector systems. These results support that the activated regions in hypothalamus differed with heat stress conditions, which induced only hyperthermia and both hyperthermia and dehydration.


Asunto(s)
Estado de Conciencia/fisiología , Regulación de la Expresión Génica/fisiología , Genes fos/fisiología , Trastornos de Estrés por Calor/genética , Trastornos de Estrés por Calor/metabolismo , Hipotálamo/metabolismo , Animales , Animales no Consanguíneos , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...