RESUMEN
Chikungunya (CHIKV) is an arthritogenic alphavirus that causes a self-limiting disease usually accompanied by joint pain and/or polyarthralgia with disabling characteristics. Immune responses developed during the acute phase of CHIKV infection determine the rate of disease progression and resolution. Annexin A1 (AnxA1) is involved in both initiating inflammation and preventing over-response, being essential for a balanced end of inflammation. In this study, we investigated the role of the AnxA1-FPR2/ALX pathway during CHIKV infection. Genetic deletion of AnxA1 or its receptor enhanced inflammatory responses driven by CHIKV. These knockout mice showed increased neutrophil accumulation and augmented tissue damage at the site of infection compared with control mice. Conversely, treatment of wild-type animals with the AnxA1 mimetic peptide (Ac2-26) reduced neutrophil accumulation, decreased local concentration of inflammatory mediators and diminished mechanical hypernociception and paw edema induced by CHIKV-infection. Alterations in viral load were mild both in genetic deletion or with treatment. Combined, our data suggest that the AnxA1-FPR2/ALX pathway is a potential therapeutic strategy to control CHIKV-induced acute inflammation and polyarthralgia.
Asunto(s)
Fiebre Chikungunya , Inflamación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Anexina A1/genética , Anexina A1/metabolismo , Artralgia , Fiebre Chikungunya/metabolismo , Inflamación/metabolismo , Ratones , Ratones Noqueados , Receptores de Formil Péptido/metabolismoRESUMEN
Host immune responses contribute to dengue's pathogenesis and severity, yet the possibility that failure in endogenous inflammation resolution pathways could characterise the disease has not been contemplated. The pro-resolving protein Annexin A1 (AnxA1) is known to counterbalance overexuberant inflammation and mast cell (MC) activation. We hypothesised that inadequate AnxA1 engagement underlies the cytokine storm and vascular pathologies associated with dengue disease. Levels of AnxA1 were examined in the plasma of dengue patients and infected mice. Immunocompetent, interferon (alpha and beta) receptor one knockout (KO), AnxA1 KO, and formyl peptide receptor 2 (FPR2) KO mice were infected with dengue virus (DENV) and treated with the AnxA1 mimetic peptide Ac2-26 for analysis. In addition, the effect of Ac2-26 on DENV-induced MC degranulation was assessed in vitro and in vivo. We observed that circulating levels of AnxA1 were reduced in dengue patients and DENV-infected mice. Whilst the absence of AnxA1 or its receptor FPR2 aggravated illness in infected mice, treatment with AnxA1 agonistic peptide attenuated disease manifestationsatteanuated the symptoms of the disease. Both clinical outcomes were attributed to modulation of DENV-mediated viral load-independent MC degranulation. We have thereby identified that altered levels of the pro-resolving mediator AnxA1 are of pathological relevance in DENV infection, suggesting FPR2/ALX agonists as a therapeutic target for dengue disease.
Asunto(s)
Anexina A1 , Dengue , Animales , Anexina A1/metabolismo , Dengue/tratamiento farmacológico , Humanos , Inflamación/patología , Ratones , Péptidos/metabolismo , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismoRESUMEN
Nonphlogistic migration of macrophages contributes to the clearance of pathogens and apoptotic cells, a critical step for the resolution of inflammation and return to homeostasis. Angiotensin-(1-7) [Ang-(1-7)] is a heptapeptide of the renin-angiotensin system that acts through Mas receptor (MasR). Ang-(1-7) has recently emerged as a novel proresolving mediator, yet Ang-(1-7) resolution mechanisms are not fully determined. Herein, Ang-(1-7) stimulated migration of human and murine monocytes/macrophages in a MasR-, CCR2-, and MEK/ERK1/2-dependent manner. Pleural injection of Ang-(1-7) promoted nonphlogistic mononuclear cell influx alongside increased levels of CCL2, IL-10, and macrophage polarization toward a regulatory phenotype. Ang-(1-7) induction of CCL2 and mononuclear cell migration was also dependent on MasR and MEK/ERK. Of note, MasR was upregulated during the resolution phase of inflammation, and its pharmacological inhibition or genetic deficiency impaired mononuclear cell recruitment during self-resolving models of LPS pleurisy and E. coli peritonitis. Inhibition/absence of MasR was associated with reduced CCL2 levels, impaired phagocytosis of bacteria, efferocytosis, and delayed resolution of inflammation. In summary, we have uncovered a potentially novel proresolving feature of Ang-(1-7), namely the recruitment of mononuclear cells favoring efferocytosis, phagocytosis, and resolution of inflammation. Mechanistically, cell migration was dependent on MasR, CCR2, and the MEK/ERK pathway.
Asunto(s)
Angiotensina I , Macrófagos , Monocitos , Fragmentos de Péptidos , Fagocitosis , Proto-Oncogenes Mas/metabolismo , Angiotensina I/metabolismo , Angiotensina I/farmacología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Monocitos/efectos de los fármacos , Monocitos/fisiología , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Peritonitis , Fagocitosis/efectos de los fármacos , Fagocitosis/fisiología , Fenotipo , Receptores CCR2/metabolismoRESUMEN
Macrophages are central to inflammation resolution, an active process aimed at restoring tissue homeostasis following an inflammatory response. Here, the effects of db-cAMP on macrophage phenotype and function were investigated. Injection of db-cAMP into the pleural cavity of mice induced monocytes recruitment in a manner dependent on PKA and CCR2/CCL2 pathways. Furthermore, db-cAMP promoted reprogramming of bone-marrow-derived macrophages to a M2 phenotype as seen by increased Arg-1/CD206/Ym-1 expression and IL-10 levels (M2 markers). Db-cAMP also showed a synergistic effect with IL-4 in inducing STAT-3 phosphorylation and Arg-1 expression. Importantly, db-cAMP prevented IFN-γ/LPS-induced macrophage polarization to M1-like as shown by increased Arg-1 associated to lower levels of M1 cytokines (TNF-α/IL-6) and p-STAT1. In vivo, db-cAMP reduced the number of M1 macrophages induced by LPS injection without changes in M2 and Mres numbers. Moreover, db-cAMP enhanced efferocytosis of apoptotic neutrophils in a PKA-dependent manner and increased the expression of Annexin A1 and CD36, two molecules associated with efferocytosis. Finally, inhibition of endogenous PKA during LPS-induced pleurisy impaired the physiological resolution of inflammation. Taken together, the results suggest that cAMP is involved in the major functions of macrophages, such as nonphlogistic recruitment, reprogramming and efferocytosis, all key processes for inflammation resolution.
Asunto(s)
Reprogramación Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Macrófagos/metabolismo , Fagocitosis , Animales , Anexina A1/metabolismo , Apoptosis/efectos de los fármacos , Arginasa/metabolismo , Bucladesina/farmacología , Antígenos CD36/metabolismo , Polaridad Celular/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Inflamación/patología , Interleucina-4/metabolismo , Isoquinolinas/farmacología , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Modelos Biológicos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/patología , Fagocitosis/efectos de los fármacos , Fenotipo , Fosforilación/efectos de los fármacos , Cavidad Pleural/metabolismo , Receptores CCR2/metabolismo , Factor de Transcripción STAT3/metabolismo , Sulfonamidas/farmacología , Factores de TiempoRESUMEN
Inflammation is a reaction of the host to infectious or sterile stimuli and has the physiological purpose of restoring tissue homeostasis. However, uncontrolled or unresolved inflammation can lead to tissue damage, giving rise to a plethora of chronic inflammatory diseases, including metabolic syndrome and autoimmunity pathologies with eventual loss of organ function. Beta-nitrostyrene and its derivatives are known to have several biological activities, including anti-edema, vasorelaxant, antiplatelet, anti-inflammatory, and anticancer. However, few studies have been carried out regarding the anti-inflammatory effects of this class of compounds. Thereby, the aim of this study was to evaluate the anti-inflammatory activity of 1-nitro-2-phenylethene (NPe) using in vitro and in vivo assays. Firstly, the potential anti-inflammatory activity of NPe was evaluated by measuring TNF-α produced by human macrophages stimulated with lipopolysaccharide (LPS). NPe at non-toxic doses opposed the inflammatory effects induced by LPS stimulation, namely production of the inflammatory cytokine TNF-α and activation of NF-κB and ERK pathways (evaluated by phosphorylation of inhibitor of kappa B-alpha [IκB-α] and extracellular signal-regulated kinase 1/2 [ERK1/2], respectively). In a well-established model of acute pleurisy, pretreatment of LPS-challenged mice with NPe reduced neutrophil accumulation in the pleural cavity. This anti-inflammatory effect was associated with reduced activation of NF-κB and ERK1/2 pathways in NPe treated mice as compared to untreated animals. Notably, NPe was as effective as dexamethasone in both, reducing neutrophil accumulation and inhibiting ERK1/2 and IκB-α phosphorylation. Taken together, the results suggest a potential anti-inflammatory activity for NPe via inhibition of ERK1/2 and NF-κB pathways on leukocytes.
Asunto(s)
Antiinflamatorios/administración & dosificación , Lipopolisacáridos/inmunología , Pleuresia/tratamiento farmacológico , Estirenos/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Estructura Molecular , FN-kappa B/metabolismo , Fosforilación , Pleuresia/etiología , Pleuresia/metabolismo , Estirenos/química , Estirenos/farmacología , Células THP-1RESUMEN
PURPOSE:: Avastin® (bevacizumab) is an anti-vascular endothelial growth factor (VEGF) monoclonal antibody given as an off-label drug by intravitreal administration for treatment of ocular diseases. The drug's clinical application and its cost-benefit profile has generated demand for its division into single-use vials to meet the low volume and low-cost doses necessary for intraocular administration. However, the safety of compounding the drug in single-use vials is still under discussion. In this study, the stability and efficacy of Avastin® repacked in individual single-use glass vials and glass ampoules by external compounding pharmacies were evaluated. METHODS:: Polyacrylamide gel electrophoresis (PAGE), size-exclusion chromatography (SEC), dynamic light scattering (DLS), and turbidimetry were selected to detect the formation of aggregates of various sizes. Changes in bevacizumab biological efficacy were investigated by using an enzyme-linked immunosorbent assay (ELISA). RESULTS:: Repacked and reference bevacizumab showed similar results when analyzed by PAGE. By SEC, a slight increase in high molecular weight aggregates and a reduction in bevacizumab monomers were observed in the products of the three compounding pharmacies relative to those in the reference bevacizumab. A comparison of repacked and reference SEC chromatograms showed that the mean monomer loss was ≤1% for all compounding pharmacies. Protein aggregates in the nanometer- and micrometer-size ranges were not detected by DLS and turbidimetry. In the efficacy assay, the biological function of repacked bevacizumab was preserved, with <3% loss of VEGF binding capacity relative to that of the reference. CONCLUSION:: The results showed that bevacizumab remained stable after compounding in ampoules and single-use glass vials; no significant aggregation, fragmentation, or loss of biological activity was observed.
Asunto(s)
Inhibidores de la Angiogénesis/química , Bevacizumab/química , Embalaje de Medicamentos , Control de Calidad , Inhibidores de la Angiogénesis/análisis , Bevacizumab/análisis , Cromatografía en Gel/métodos , Estabilidad de Medicamentos , Dispersión Dinámica de Luz/métodos , Electroforesis en Gel de Poliacrilamida/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Inyecciones Intravítreas , Peso Molecular , Nefelometría y Turbidimetría/métodos , Factor A de Crecimiento Endotelial Vascular/análisisRESUMEN
ABSTRACT Purpose: Avastin® (bevacizumab) is an anti-vascular endothelial growth factor (VEGF) monoclonal antibody given as an off-label drug by intravitreal administration for treatment of ocular diseases. The drug's clinical application and its cost-benefit profile has generated demand for its division into single-use vials to meet the low volume and low-cost doses necessary for intraocular administration. However, the safety of compounding the drug in single-use vials is still under discussion. In this study, the stability and efficacy of Avastin® repacked in individual single-use glass vials and glass ampoules by external compounding pharmacies were evaluated. Methods: Polyacrylamide gel electrophoresis (PAGE), size-exclusion chromatography (SEC), dynamic light scattering (DLS), and turbidimetry were selected to detect the formation of aggregates of various sizes. Changes in bevacizumab biological efficacy were investigated by using an enzyme-linked immunosorbent assay (ELISA). Results: Repacked and reference bevacizumab showed similar results when analyzed by PAGE. By SEC, a slight increase in high molecular weight aggregates and a reduction in bevacizumab monomers were observed in the products of the three compounding pharmacies relative to those in the reference bevacizumab. A comparison of repacked and reference SEC chromatograms showed that the mean monomer loss was ≤1% for all compounding pharmacies. Protein aggregates in the nanometer- and micrometer-size ranges were not detected by DLS and turbidimetry. In the efficacy assay, the biological function of repacked bevacizumab was preserved, with <3% loss of VEGF binding capacity relative to that of the reference. Conclusion: The results showed that bevacizumab remained stable after compounding in ampoules and single-use glass vials; no significant aggregation, fragmentation, or loss of biological activity was observed.
RESUMO Objetivos: Avastin® (bevacizumabe) é um anticorpo monoclonal inibidor do fator de crescimento endotelial de vasos (VEGF) utilizado "off-label" por meio de administração intravítrea para o tratamento de doenças oculares. A sua aplicação clínica associada ao custo-benefício do medicamento gerou uma demanda para seu fracionamento em frascos de dose única para utilização pela via intraocular. No entanto, a segurança do fracionamento do anticorpo em frascos de dose única ainda é alvo de discussão. Neste trabalho, a estabilidade e a eficácia do Avastin® fracionado em frascos ou ampolas de vidro de dose unitária por farmácias de manipulação do mercado foram avaliadas. Métodos: As técnicas de eletroforese em gel de poliacrilamida (PAGE), cromatografia por exclusão de tamanho (SEC), espalhamento dinâmico da luz (DLS) e turbidimetria foram empregadas para avaliar a formação de agregados de diferentes tamanhos. Alterações na atividade biológica do bevacizumabe foram estudadas utilizando ELISA. Resultados: Amostras referência e do bevacizumabe fracionado apresentaram resultados semelhantes quando analisado por gel de poliacrilamida. Por cromatografia por exclusão de tamanho, um pequeno aumento na quantidade de agregados de alta massa molar seguido de uma redução nos monômeros do bevacizumabe foram observados para as amostras das três farmácias de manipulação quando comparado ao referência. A comparação dos cromatogramas mostrou uma quantidade de redução do monômero inferior a 1% para todas as amostras fracionadas. Por espalhamento dinâmico da luz e turbidimetria, não foram detectados agregados de proteína na faixa de tamanho de micrômetro e nanômetro. No ensaio de eficácia, o bevacizumabe fracionado preservou sua função biológica pois apresentou menos de 3% de perda na capacidade de ligação ao VEGF quando comparado ao referência. Conclusão: Este estudo sugere que o bevacizumabe se mantem estável após fracionamento em ampolas e frascos de vidro de dose unitária pois não foram observadas agregação e/ou fragmentação de proteínas e perda de atividade biológica em quan tidades significativas.
Asunto(s)
Control de Calidad , Inhibidores de la Angiogénesis/química , Embalaje de Medicamentos , Bevacizumab/química , Ensayo de Inmunoadsorción Enzimática/métodos , Cromatografía en Gel/métodos , Inhibidores de la Angiogénesis/análisis , Factor A de Crecimiento Endotelial Vascular/análisis , Estabilidad de Medicamentos , Electroforesis en Gel de Poliacrilamida/métodos , Inyecciones Intravítreas , Bevacizumab/análisis , Dispersión Dinámica de Luz/métodos , Peso Molecular , Nefelometría y Turbidimetría/métodosRESUMEN
BACKGROUND: Preeclampsia (PE) is a pregnancy disease associated with exacerbated inflammatory response. Annexin A1 (AnxA1) is a glucocorticoid-regulated protein endowed with anti-inflammatory and proresolving properties that has been much studied in various animal models of inflammation but poorly studied in the context of human inflammatory diseases. The main objective of this study was to measure AnxA1 levels in PE women and to compare those levels in normotensive pregnant and non-pregnant women. We evaluated the association among AnxA1, ultrasensitive C reactive protein (us-CRP) and soluble tumor necrosis factor alpha receptor type 1 (sTNF-R1) plasma levels of the study participants. METHODS: This study included 40 non-pregnant, 38 normotensive pregnant and 51 PE women. PE women were stratified in early (N = 23) and late (N = 28) subgroups, according to gestational age (GA) at onset of clinical symptoms. Protein AnxA1 and us-CRP plasma levels were determined by ELISA and immunoturbidimetric assays, respectively. Transcript levels of AnxA1 in peripheral blood mononuclear cells (PBMC) were measured by real time RT-PCR. RESULTS: Increased levels of AnxA1 coincided with higher us-CRP levels in the plasma of PE women. Pregnant women with early PE had higher levels of AnxA1 and us-CRP than normotensive pregnant women with GA <34 weeks. No significant difference was found for AnxA1 and us-CRP, comparing late PE and normotensive pregnant women with GA ≥ 34 weeks. AnxA1 mRNA levels in PBMC were similar among the studied groups. AnxA1 was positively correlated with sTNF-R1, but not with us-CRP. CONCLUSIONS: Our data show that increased AnxA1 levels were associated with a systemic inflammatory phenotype in PE, suggesting AnxA1 deregulation in PE pathogenesis. However, more studies are needed to clarify the role of AnxA1 and other proresolving molecules in the context of the systemic inflammatory response in this intriguing disease.