Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Sci ; 154(4): 264-273, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485344

RESUMEN

The monosynaptic connection from the lateral parabrachial nucleus (LPB) to the central amygdala (CeA) serves as a fundamental pathway for transmitting nociceptive signals to the brain. The LPB receives nociceptive information from the dorsal horn and spinal trigeminal nucleus and sends it to the "nociceptive" CeA, which modulates pain-associated emotions and nociceptive sensitivity. To elucidate the role of densely expressed mu-opioid receptors (MORs) within this pathway, we investigated the effects of exogenously applied opioids on LPB-CeA synaptic transmission, employing optogenetics in mice expressing channelrhodopsin-2 in LPB neurons with calcitonin gene-related peptide (CGRP). A MOR agonist ([D-Ala2,N-Me-Phe4,Glycinol5]-enkephalin, DAMGO) significantly reduced the amplitude of light-evoked excitatory postsynaptic currents (leEPSCs), in a manner negatively correlated with an increase in the paired-pulse ratio. An antagonist of MORs significantly attenuated these effects. Notably, this antagonist significantly increased leEPSC amplitude when applied alone, an effect further amplified in mice subjected to lipopolysaccharide injection 2 h before brain isolation, yet not observed at the 24-h mark. We conclude that opioids could shut off the ascending nociceptive signal at the LPB-CeA synapse through presynaptic mechanisms. Moreover, this gating process might be modulated by endogenous opioids, and the innate immune system influences this modulation.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Núcleo Amigdalino Central , Ratones , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Núcleo Amigdalino Central/metabolismo , Transmisión Sináptica , Neuronas , Sinapsis/fisiología , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacología
2.
Neurobiol Pain ; 13: 100131, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215502

RESUMEN

Nociplastic pain, the most recently proposed mechanistic descriptor of chronic pain, is the pain resulting from an altered nociceptive system and network without clear evidence of nociceptor activation, injury or disease in the somatosensory system. As the pain-associated symptoms in many patients suffering from undiagnosed pain would result from the nociplastic mechanisms, it is an urgent issue to develop pharmaceutical therapies that would mitigate the aberrant nociception in nociplastic pain. We have recently reported that a single injection of formalin to the upper lip shows sustained sensitization lasting for more than 12 days at the bilateral hindpaws, where there is no injury or neuropathy in rats. Using the equivalent model in mice, we show that pregabalin (PGB), a drug used for treating neuropathic pain, significantly attenuates this formalin-induced widespread sensitization at the bilateral hindpaws, even on the 6 day after the initial single orofacial injection of formalin. On the 10th day after formalin injection, the hindlimb sensitization before PGB injection was no more significant in mice receiving daily PGB injections, unlike those receiving daily vehicle injections. This result suggests that PGB would act on the central pain mechanisms that undergo nociplastic changes triggered by initial inflammation and mitigate widespread sensitization resulting from the established changes.

3.
Sci Data ; 9(1): 457, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907922

RESUMEN

Neurons in the brainstem preBötzinger complex (preBötC) generate the rhythm and rudimentary motor pattern for inspiratory breathing movements. We performed whole-cell patch-clamp recordings from inspiratory neurons in the preBötC of neonatal mouse slices that retain breathing-related rhythmicity in vitro. We classified neurons based on their electrophysiological properties and genetic background, and then aspirated their cellular contents for single-cell RNA sequencing (scRNA-seq). This data set provides the raw nucleotide sequences (FASTQ files) and annotated files of nucleotide sequences mapped to the mouse genome (mm10 from Ensembl), which includes the fragment counts, gene lengths, and fragments per kilobase of transcript per million mapped reads (FPKM). These data reflect the transcriptomes of the neurons that generate the rhythm and pattern for inspiratory breathing movements.


Asunto(s)
Neuronas , Centro Respiratorio , Transcriptoma , Animales , Animales Recién Nacidos , Ratones , Neuronas/fisiología , Técnicas de Placa-Clamp , Respiración , Centro Respiratorio/citología , Centro Respiratorio/fisiología , Análisis de la Célula Individual
4.
Neuropharmacology ; 210: 109029, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35305985

RESUMEN

The "nociplastic pain," a recently proposed novel mechanistic pain descriptor, is defined as pain occurring through altered nociception without nociceptor activation and nerve injury. Nociplastic pain is often characterized by widespread pain sensitization (WSP) in multiple body regions (Fitzcharles et al., 2021). As many patients with primary chronic pain would have nociplastic backgrounds, developing appropriate methods to evaluate drug effects against nociplastic pain in animal model is in great demand. Using two rat models with the WSP involving central amygdala (CeA) activation by orofacial inflammation or direct chemogenetic activation (Sugimoto et al., 2021), we examined whether widely used analgesics, acetaminophen (AcAph), pregabalin (PGB), and duloxetine (DLX) could attenuate the WSP. AcAph (100 or 200 mg/kg, i.p.) significantly elevated 50%-paw withdrawal threshold (PWT50), which had been lowered significantly by upper lip injection of formalin, or systemic injection of clozapine-N-oxide in the rats with excitatory designer receptors (hM3Dq) expressed in the right CeA. This effect lasted for > ∼4 h. PGB (30 mg/kg, i.p.) also significantly counteracted the lowered PWT50 in rats with orofacial formalin injection for >∼6 h. DLX was ineffective on the WSP. Based on these results, we propose that these preclinical models could be used to evaluate drug effects for primary chronic pain. We conclude that the widely used pain killers, AcAph and PGB, also relieve nociplastic widespread sensitization in the absence of ongoing nociceptor activation and nerve injury.


Asunto(s)
Acetaminofén , Núcleo Amigdalino Central , Acetaminofén/farmacología , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Sensibilización del Sistema Nervioso Central , Modelos Animales de Enfermedad , Humanos , Dolor/tratamiento farmacológico , Pregabalina/farmacología , Pregabalina/uso terapéutico , Ratas , Roedores , Ácido gamma-Aminobutírico/uso terapéutico
5.
Sci Rep ; 12(1): 2923, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35190626

RESUMEN

Breathing depends on interneurons in the preBötzinger complex (preBötC) derived from Dbx1-expressing precursors. Here we investigate whether rhythm- and pattern-generating functions reside in discrete classes of Dbx1 preBötC neurons. In a slice model of breathing with ~ 5 s cycle period, putatively rhythmogenic Type-1 Dbx1 preBötC neurons activate 100-300 ms prior to Type-2 neurons, putatively specialized for output pattern, and 300-500 ms prior to the inspiratory motor output. We sequenced Type-1 and Type-2 transcriptomes and identified differential expression of 123 genes including ionotropic receptors (Gria3, Gabra1) that may explain their preinspiratory activation profiles and Ca2+ signaling (Cracr2a, Sgk1) involved in inspiratory and sigh bursts. Surprisingly, neuropeptide receptors that influence breathing (e.g., µ-opioid and bombesin-like peptide receptors) were only sparsely expressed, which suggests that cognate peptides and opioid drugs exert their profound effects on a small fraction of the preBötC core. These data in the public domain help explain the neural origins of breathing.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interneuronas/fisiología , Neuronas Motoras/fisiología , Transcriptoma/genética , Animales , Animales Recién Nacidos , Fenómenos Electrofisiológicos , Expresión Génica , Ratones , Ratones Transgénicos , Respiración
6.
Pain ; 162(8): 2273-2286, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33900711

RESUMEN

ABSTRACT: Widespread or ectopic sensitization is a hallmark symptom of chronic pain, characterized by aberrantly enhanced pain sensitivity in multiple body regions remote from the site of original injury or inflammation. The central mechanism underlying widespread sensitization remains unidentified. The central nucleus of the amygdala (also called the central amygdala, CeA) is well situated for this role because it receives nociceptive information from diverse body sites and modulates pain sensitivity in various body regions. In this study, we examined the role of the CeA in a novel model of ectopic sensitization of rats. Injection of formalin into the left upper lip resulted in latent bilateral sensitization in the hind paw lasting >13 days in male Wistar rats. Chemogenetic inhibition of gamma-aminobutyric acid-ergic neurons or blockade of calcitonin gene-related peptide receptors in the right CeA, but not in the left, significantly attenuated this sensitization. Furthermore, chemogenetic excitation of gamma-aminobutyric acid-ergic neurons in the right CeA induced de novo bilateral hind paw sensitization in the rats without inflammation. These results indicate that the CeA neuronal activity determines hind paw tactile sensitivity in rats with remote inflammatory pain. They also suggest that the hind paw sensitization used in a large number of preclinical studies might not be simply a sign of the pain at the site of injury but rather a representation of the augmented CeA activity resulting from inflammation/pain in any part of the body or from activities of other brain regions, which has an active role of promoting defensive/protective behaviors to avoid further bodily damage.


Asunto(s)
Núcleo Amigdalino Central , Animales , Dolor Facial , Masculino , Neuronas , Umbral del Dolor , Ratas , Ratas Wistar
7.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33188006

RESUMEN

Central amygdala (CeA) neurons expressing protein kinase Cδ (PKCδ+) or somatostatin (Som+) differentially modulate diverse behaviors. The underlying features supporting cell-type-specific function in the CeA, however, remain unknown. Using whole-cell patch-clamp electrophysiology in acute mouse brain slices and biocytin-based neuronal reconstructions, we demonstrate that neuronal morphology and relative excitability are two distinguishing features between Som+ and PKCδ+ neurons in the laterocapsular subdivision of the CeA (CeLC). Som+ neurons, for example, are more excitable, compact, and with more complex dendritic arborizations than PKCδ+ neurons. Cell size, intrinsic membrane properties, and anatomic localization were further shown to correlate with cell-type-specific differences in excitability. Lastly, in the context of neuropathic pain, we show a shift in the excitability equilibrium between PKCδ+ and Som+ neurons, suggesting that imbalances in the relative output of these cells underlie maladaptive changes in behaviors. Together, our results identify fundamentally important distinguishing features of PKCδ+ and Som+ cells that support cell-type-specific function in the CeA.


Asunto(s)
Núcleo Amigdalino Central , Neuralgia , Animales , Núcleo Amigdalino Central/metabolismo , Ratones , Neuronas/metabolismo , Proteína Quinasa C-delta/metabolismo , Somatostatina/metabolismo
8.
Cell Rep ; 29(2): 332-346.e5, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597095

RESUMEN

Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain.


Asunto(s)
Núcleo Amigdalino Central/fisiopatología , Neuralgia/fisiopatología , Animales , Activación Enzimática , Femenino , Hipersensibilidad/complicaciones , Hipersensibilidad/fisiopatología , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Modelos Neurológicos , Tejido Nervioso/lesiones , Neuralgia/complicaciones , Neuronas/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/patología , Temperatura , Tacto
9.
Front Neural Circuits ; 13: 58, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632244

RESUMEN

Chronic pain is a major health problem, affecting 10-30% of the population in developed countries. While chronic pain is defined as "a persistent complaint of pain lasting for more than the usual period for recovery," recently accumulated lines of evidence based on human brain imaging have revealed that chronic pain is not simply a sustained state of nociception, but rather an allostatic state established through gradually progressing plastic changes in the central nervous system. To visualize the brain activity associated with spontaneously occurring pain during the shift from acute to chronic pain under anesthetic-free conditions, we used manganese-enhanced magnetic resonance imaging (MEMRI) with a 9.4-T scanner to visualize neural activity-dependent accumulation of manganese in the brains of mice with hind paw inflammation. Time-differential analysis between 2- and 6-h after formalin injection to the left hind paw revealed a significantly increased MEMRI signal in various brain areas, including the right insular cortex, right nucleus accumbens, right globus pallidus, bilateral caudate putamen, right primary/secondary somatosensory cortex, bilateral thalamus, right amygdala, bilateral substantial nigra, and left ventral tegmental area. To analyze the role of the right amygdala in these post-formalin MEMRI signals, we repeatedly inhibited right amygdala neurons during this 2-6-h period using the "designer receptors exclusively activated by designer drugs" (DREADD) technique. Pharmacological activation of inhibitory DREADDs expressed in the right amygdala significantly attenuated MEMRI signals in the bilateral infralimbic cortex, bilateral nucleus accumbens, bilateral caudate putamen, right globus pallidus, bilateral ventral tegmental area, and bilateral substantia nigra, suggesting that the inflammatory pain-associated activation of these structures depends on the activity of the right amygdala and DREADD-expressing adjacent structures. In summary, the combined use of DREADD and MEMRI is a promising approach for revealing regions associated with spontaneous pain-associated brain activities and their causal relationships.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Inflamación/fisiopatología , Red Nerviosa/fisiopatología , Dolor/fisiopatología , Amígdala del Cerebelo/diagnóstico por imagen , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética , Ratones , Red Nerviosa/diagnóstico por imagen , Neuronas/fisiología , Dolor/diagnóstico por imagen
10.
PLoS Biol ; 17(2): e2006094, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30789900

RESUMEN

Inspiratory breathing movements depend on pre-Bötzinger complex (preBötC) interneurons that express calcium (Ca2+)-activated nonselective cationic current (ICAN) to generate robust neural bursts. Hypothesized to be rhythmogenic, reducing ICAN is predicted to slow down or stop breathing; its contributions to motor pattern would be reflected in the magnitude of movements (output). We tested the role(s) of ICAN using reverse genetic techniques to diminish its putative ion channels Trpm4 or Trpc3 in preBötC neurons in vivo. Adult mice transduced with Trpm4-targeted short hairpin RNA (shRNA) progressively decreased the tidal volume of breaths yet surprisingly increased breathing frequency, often followed by gasping and fatal respiratory failure. Mice transduced with Trpc3-targeted shRNA survived with no changes in breathing. Patch-clamp and field recordings from the preBötC in mouse slices also showed an increase in the frequency and a decrease in the magnitude of preBötC neural bursts in the presence of Trpm4 antagonist 9-phenanthrol, whereas the Trpc3 antagonist pyrazole-3 (pyr-3) showed inconsistent effects on magnitude and no effect on frequency. These data suggest that Trpm4 mediates ICAN, whose influence on frequency contradicts a direct role in rhythm generation. We conclude that Trpm4-mediated ICAN is indispensable for motor output but not the rhythmogenic core mechanism of the breathing central pattern generator.


Asunto(s)
Interneuronas/metabolismo , Actividad Motora , Respiración , Canales Catiónicos TRPM/metabolismo , Envejecimiento/fisiología , Animales , Conducta Animal , Femenino , Masculino , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPM/genética , Vigilia
11.
J Neurosci ; 39(3): 485-502, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30478035

RESUMEN

It is well known that the posterior parietal cortex (PPC) and frontal motor cortices in primates preferentially control voluntary movements of contralateral limbs. The PPC of rats has been defined based on patterns of thalamic and cortical connectivity. The anatomical characteristics of this area suggest that it may be homologous to the PPC of primates. However, its functional roles in voluntary forelimb movements have not been well understood, particularly in the lateralization of motor limb representation; that is, the limb-specific activity representations for right and left forelimb movements. We examined functional spike activity of the PPC and two motor cortices, the primary motor cortex (M1) and the secondary motor cortex (M2), when head-fixed male rats performed right or left unilateral movements. Unlike primates, PPC neurons in rodents were found to preferentially represent ipsilateral forelimb movements, in contrast to the contralateral preference of M1 and M2 neurons. Consistent with these observations, optogenetic activation of PPC and motor cortices, respectively, evoked ipsilaterally and contralaterally biased forelimb movements. Finally, we examined the effects of optogenetic manipulation on task performance. PPC or M1 inhibition by optogenetic GABA release shifted the behavioral limb preference contralaterally or ipsilaterally, respectively. In addition, weak optogenetic PPC activation, which was insufficient to evoke motor responses by itself, shifted the preference ipsilaterally; although similar M1 activation showed no effects on task performance. These paradoxical observations suggest that the PPC plays evolutionarily different roles in forelimb control between primates and rodents.SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2, respectively) are involved in voluntary movements with contralateral preference. However, it remains unclear whether and how the posterior parietal cortex (PPC) participates in controlling multiple limb movements. We recorded functional activity from these areas using a behavioral task to monitor movements of the right and left forelimbs separately. PPC neurons preferentially represented ipsilateral forelimb movements and optogenetic PPC activation evoked ipsilaterally biased forelimb movements. Optogenetic PPC inhibition via GABA release shifted the behavioral limb preference contralaterally during task performance, whereas weak optogenetic PPC activation, which was insufficient to evoke motor responses by itself, shifted the preference ipsilaterally. Our findings suggest rodent PPC contributes to ipsilaterally biased motor response and/or planning.


Asunto(s)
Miembro Anterior/fisiología , Lateralidad Funcional/fisiología , Movimiento/fisiología , Lóbulo Parietal/fisiología , Animales , Channelrhodopsins/genética , Channelrhodopsins/fisiología , Condicionamiento Operante , Electromiografía , Masculino , Corteza Motora/fisiología , Optogenética , Técnicas de Placa-Clamp , Desempeño Psicomotor/fisiología , Ratas , Ratas Transgénicas , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/fisiología
12.
Adv Exp Med Biol ; 1099: 157-166, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30306523

RESUMEN

In addition to the canonical spino-thalamo-cortical pathway, lines of recently accumulated anatomical and physiological evidence suggest that projections originating in nociception-specific neurons in lamina I of the dorsal horn or the spinal nucleus of the trigeminal nerve to the lateral parabrachial nucleus (LPB) and then to the central amygdala (CeA) play essential roles in the nociception-emotion link and its tightening in chronic pain. With recent advances in the artificial manipulation of central neuronal activity, such as those with optogenetics, it is now possible to address many unanswered questions regarding the molecular and cellular mechanisms underlying the plastic changes in this pathway and their role in the pain chronification process.


Asunto(s)
Núcleo Amigdalino Central/fisiopatología , Dolor Crónico/fisiopatología , Vías Nerviosas , Plasticidad Neuronal , Nocicepción , Amígdala del Cerebelo , Emociones , Humanos , Núcleos Parabraquiales , Nervio Trigémino
13.
Eur J Neurosci ; 48(9): 3052-3061, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30240530

RESUMEN

The bed nucleus of the stria terminalis (BNST) and the central amygdala (CeA) comprise a forebrain unit that has been described as the "extended amygdala". These two nuclei send dense projections to each other and have been implicated in the regulation of negative emotional states, including anxiety and fear. The present study employed an optogenetic technique to examine whether stimulation of CeA-projecting dorsolateral BNST (dlBNST) neuron terminals would influence anxiety-like behaviors in male Sprague-Dawley rats. Photostimulation of CeA-projecting dlBNST neuron terminals produced anxiogenic effects in an elevated plus maze test. This finding is inconsistent with previous reports showing that optogenetic stimulation of BNST neurons projecting to the lateral hypothalamus (LH) and ventral tegmental area (VTA) produces anxiolytic rather than anxiogenic effects. To address this issue, electrophysiological analyses were conducted to characterize dlBNST neurons projecting to the CeA, LH, and VTA. dlBNST neurons can be electrophysiologically classified into three distinct cell types (types I-III) according to their responses to depolarizing and hyperpolarizing current injections. Whole-cell patch-clamp recordings revealed that more than 60% of the CeA-projecting dlBNST neurons were type II, whereas approximately 80% of the LH- and VTA-projecting dlBNST neurons were type III. These electrophysiological results will help elucidate the mechanisms underlying the heterogeneity of BNST neurons during the regulation of anxiety-like behaviors.


Asunto(s)
Ansiedad/metabolismo , Núcleo Amigdalino Central/metabolismo , Red Nerviosa/metabolismo , Núcleos Septales/metabolismo , Animales , Ansiedad/psicología , Núcleo Amigdalino Central/química , Masculino , Aprendizaje por Laberinto/fisiología , Red Nerviosa/química , Optogenética/métodos , Ratas , Ratas Sprague-Dawley , Núcleos Septales/química
14.
J Neurophysiol ; 115(6): 2721-39, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26888105

RESUMEN

A large majority of neurons in the superficial layer of the dorsal horn projects to the lateral parabrachial nucleus (LPB). LPB neurons then project to the capsular part of the central amygdala (CeA; CeC), a key structure underlying the nociception-emotion link. LPB-CeC synaptic transmission is enhanced in various pain models by using electrical stimulation of putative fibers of LPB origin in brain slices. However, this approach has limitations for examining direct monosynaptic connections devoid of directly stimulating fibers from other structures and local GABAergic neurons. To overcome these limitations, we infected the LPB of rats with an adeno-associated virus vector expressing channelrhodopsin-2 and prepared coronal and horizontal brain slices containing the amygdala. We found that blue light stimulation resulted in monosynaptic excitatory postsynaptic currents (EPSCs), with very small latency fluctuations, followed by a large polysynaptic inhibitory postsynaptic current in CeC neurons, regardless of the firing pattern type. Intraplantar formalin injection at 24 h before slice preparation significantly increased EPSC amplitude in late firing-type CeC neurons. These results indicate that direct monosynaptic glutamatergic inputs from the LPB not only excite CeC neurons but also regulate CeA network signaling through robust feed-forward inhibition, which is under plastic modulation in response to persistent inflammatory pain.


Asunto(s)
Núcleo Amigdalino Central/fisiopatología , Neuronas/fisiología , Dolor Nociceptivo/fisiopatología , Núcleos Parabraquiales/fisiopatología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Animales , Núcleo Amigdalino Central/patología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Plasticidad Neuronal/fisiología , Neuronas/patología , Dolor Nociceptivo/patología , Núcleos Parabraquiales/patología , Ratas Wistar , Sinapsis/patología , Técnicas de Cultivo de Tejidos
15.
Mol Brain ; 8: 22, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25888401

RESUMEN

BACKGROUND: Pavlovian fear conditioning is a form of learning accomplished by associating a conditioned stimulus (CS) and an unconditioned stimulus (US). While CS-US associations are generally thought to occur in the amygdala, the pathway mediating US signal processing has only been partially identified. The external part of the pontine lateral parabrachial nucleus (elPB) is well situated for providing US nociceptive information to the central amygdala (CeA), which was recently revealed to play a primary role in fear acquisition. Therefore, we manipulated the elPB activity to examine its role in the regulation of fear learning. RESULTS: First, we transiently inactivate the elPB during the acquisition of fear memory. Mice received bilateral elPB injections of the GABAA agonist muscimol (MUS) or phosphate-buffered saline (drug control), with bilateral misplacement of MUS defined as a placement control group. After the injection, mice were conditioned with a pure tone and foot-shock. On a memory retrieval test on day 2, the freezing ratio was significantly lower in the MUS group compared with that in the drug control or placement control groups. A second retrieval test using a pip tone on day 4 following de novo training on day 3, resulted in significant freezing with no group differences, indicating integrity of fear learning and a temporary limited effect of MUS. Next, we examined whether selectively activating the elPB-CeC pathway is sufficient to induce fear learning when paired with CS. Mice with channelrhodopsin2 (ChR2) expressed in the elPB received a pure tone (CS) in association with optical stimulation in the CeA (CS-LED paired group). On the retrieval test, CS-LED paired mice exhibited significantly higher freezing ratios evoked by CS presentation compared with both control mice receiving optical stimulation immediately after being placed in the shock chamber and exposed to the CS much later (immediate shock group) and those expressing only GFP (GFP control group). These results suggest that selective stimulation of the elPB-CeC pathway substitutes for the US to induce fear learning. CONCLUSIONS: The elPB activity is necessary and sufficient to trigger fear learning, likely as a part of the pathway transmitting aversive signals to the CeA.


Asunto(s)
Miedo/fisiología , Memoria/fisiología , Núcleos Parabraquiales/fisiología , Animales , Condicionamiento Psicológico/efectos de los fármacos , Electrochoque , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Inmovilización , Inyecciones , Ratones , Muscimol/farmacología , Núcleos Parabraquiales/efectos de los fármacos , Técnicas de Placa-Clamp , Estimulación Física , Factores de Tiempo , Núcleo Caudal del Trigémino/fisiología
16.
Cell Rep ; 11(2): 261-9, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25843716

RESUMEN

Memory is thought to be stored in the brain as an ensemble of cells activated during learning. Although optical stimulation of a cell ensemble triggers the retrieval of the corresponding memory, it is unclear how the association of information occurs at the cell ensemble level. Using optogenetic stimulation without any sensory input in mice, we found that an artificial association between stored, non-related contextual, and fear information was generated through the synchronous activation of distinct cell ensembles corresponding to the stored information. This artificial association shared characteristics with physiologically associated memories, such as N-methyl-D-aspartate receptor activity and protein synthesis dependence. These findings suggest that the association of information is achieved through the synchronous activity of distinct cell ensembles. This mechanism may underlie memory updating by incorporating novel information into pre-existing networks to form qualitatively new memories.


Asunto(s)
Miedo/fisiología , Hipocampo/metabolismo , Memoria/fisiología , Receptores de N-Metil-D-Aspartato/biosíntesis , Animales , Hipocampo/citología , Hipocampo/fisiología , Aprendizaje/fisiología , Ratones , Optogenética , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...