Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Inorg Chem ; 45(3): 1299-304, 2006 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-16441142

RESUMEN

Alternating-current (ac) magnetic susceptibility measurements for tris(dipicolinato) complexes with a trivalent heavy lanthanide ion, [N(C2H5)4]3[Ln(dipic)(3)] x nH2O (dipic = pyridine-2,6-dicarboxylate; Ln = Tb, Dy, Ho, Er, Tm, or Yb) are reported. While none of the six complexes showed a magnetization lag from the ac magnetic field of 10-10(3) Hz above 1.8 K, the Dy, Er, and Yb complexes with odd numbers of 4f electrons exhibited the magnetization lag in a static magnetic field. This phenomenon is explained to be caused by the elimination of a fast relaxation path, which is only effective for the Kramers doublet ground states in near zero field. At higher static fields, the remaining paths such as Orbach and/or direct processes govern the dynamics of the two-level systems comprised of spin-up and spin-down states. The non-Kramers complexes were found to have a nondegenerate ground state with large energy gaps from higher states, which is consistent with their fast magnetization relaxation.

4.
J Am Chem Soc ; 127(11): 3650-1, 2005 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-15771471

RESUMEN

The first measurements of magnetization hysteresis loops on a diluted single crystal of [(Pc)2Ho]-.TBA+ (Pc = phthalocyaninato, TBA = tetrabutylammonium) in the subkelvin temperature range are reported. Characteristic staircase-like structure was observed, indicating the occurrence of the quantum tunneling of magnetization (QTM), which is a characteristic feature of SMMs. The quantum process in the new lanthanide SMMs is due to resonant quantum tunneling between entangled states of the electronic and nuclear spin systems, which is an essentially different mechanism from those of the known transition-metal-cluster SMMs. Evidence of the two-body quantum process was also observed for the first time in lanthanide complex systems.

5.
Inorg Chem ; 43(18): 5498-500, 2004 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-15332799

RESUMEN

An alternating-current (ac) magnetic susceptibility measurement for the [(Pc)(2)Tb(III)](0) complex (Pc = phthalocyaninato) has shown that ligand oxidation of the anionic [(Pc)(2)Tb(III)](-) complex gives rise to a significant upward shift of the temperature range where the magnetization response shows a phase lag behind the time-varying external magnetic field. The peaks of the out-of-phase component of the ac susceptibility of the pi-radical [(Pc)(2)Tb(III)](0) were observed at 50, 43, and 36 K with ac magnetic fields of 10(3), 10(2), and 10 Hz, respectively, which were more than 10 K higher than the corresponding values of the anionic complex with a closed-shell pi-system. The ac susceptibility measurements on the complex with octa(dodecoxy)-substituted Pc ligand, which is readily dilutable in diamagnetic media, proved that the significant rise of the temperatures occurs as an intrinsic single-molecular property of the complex possessing both J = 6 and S = (1)/(2) systems, and is not due to long-range magnetic order or interactions between adjacent unpaired pi-electrons.


Asunto(s)
Magnetismo , Compuestos Organometálicos/química , Temperatura , Terbio/química , Ligandos , Oxidación-Reducción
6.
J Am Chem Soc ; 125(29): 8694-5, 2003 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-12862442

RESUMEN

Double-decker phthalocyanine complexes with Tb3+ or Dy3+ showed slow magnetization relaxation as a single-molecular property. The temperature ranges in which the behavior was observed were far higher than that of the transition-metal-cluster single-molecule magnets (SMMs). The significant temperature rise results from a mechanism in the relaxation process different from that in the transition-metal-cluster SMMs. The effective energy barrier for reversal of the magnetic moment is determined by the ligand field around a lanthanide ion, which gives the lowest degenerate substate a large |Jz| value and large energy separations from the rest of the substates in the ground-state multiplets.

7.
Inorg Chem ; 42(7): 2440-6, 2003 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-12665381

RESUMEN

The f-electronic structures of the ground states of anionic bis(phthalocyaninato)lanthanides, [Pc(2)Ln](-) (Pc = dianion of phthalocyanine, Ln = Tb(3+), Dy(3+), Ho(3+), Er(3+), Tm(3+), or Yb(3+)), are determined. Magnetic susceptibilities of the powder samples of [Pc(2)Ln]TBA (TBA = tetra-n-butylammonium cation) in the range 1.8-300 K showed characteristic temperature dependences which resulted from splittings of the ground-state multiplets. NMR signals for the two kinds of protons on the Pc rings at room temperature were shifted to lower frequency with respect to the diamagnetic Y complex in Ln = Tb, Dy, and Ho cases, and to higher frequency in Er, Tm, and Yb cases. The ratios of the paramagnetic shifts of the two positions were near constant in the six cases. This indicates that the shifts are predominantly caused by the magnetic dipolar term, which is determined by the anisotropy of the magnetic susceptibility of the lanthanide ion. Using a multidimensional nonlinear minimization algorithm, we determined a set of ligand-field parameters that reproduces both the NMR and the magnetic susceptibility data of the six complexes simultaneously. Each ligand-field parameter was assumed to be a linear function of atomic number of the lanthanide. The energies and wave functions of the sublevels of the multiplets are presented. Temperature dependences of anisotropies in the magnetic susceptibilities are theoretically predicted for the six complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA