Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36559292

RESUMEN

Over the past 15 years, glycolipid-type biosurfactant compounds have been postulated as novel, naturally synthesized anticancer agents. This study utilized a recombinant strain of Pseudomonas aeruginosa to biosynthesize a preparation of mono-rhamnolipids that were purified via both liquid and solid-phase extraction, characterized by HPLC-MS, and utilized to treat two colorectal cancer cell lines (HCT-116 and Caco2) and a healthy colonic epithelial cell line CCD-841-CoN. Additionally, the anticancer activity of these mono-rhamnolipids was compared to an alternative naturally derived anticancer agent, Piceatannol. XTT cell viability assays showed that treatment with mono-rhamnolipid significantly reduced the viability of both colorectal cancer cell lines whilst having little effect on the healthy colonic epithelial cell line. At the concentrations tested mono-rhamnolipids were also shown to be more cytotoxic to the colorectal cancer cells than Piceatannol. Staining of mono-rhamnolipid-treated cells with propidium iodine and acridine orange appeared to show that these compounds induced necrosis in both colorectal cancer cell lines. These data provide an early in vitro proof-of-principle for utilizing these compounds either as active pharmaceutical ingredient for the treatment of colorectal cancer or incorporations into nutraceutical formulations to potentially prevent gastrointestinal tract cancer.

2.
DNA Res ; 28(3)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34142133

RESUMEN

Spinach (Spinacia oleracea) is grown as a nutritious leafy vegetable worldwide. To accelerate spinach breeding efficiency, a high-quality reference genome sequence with great completeness and continuity is needed as a basic infrastructure. Here, we used long-read and linked-read technologies to construct a de novo spinach genome assembly, designated SOL_r1.1, which was comprised of 287 scaffolds (total size: 935.7 Mb; N50 = 11.3 Mb) with a low proportion of undetermined nucleotides (Ns = 0.34%) and with high gene completeness (BUSCO complete 96.9%). A genome-wide survey of resistance gene analogues identified 695 genes encoding nucleotide-binding site domains, receptor-like protein kinases, receptor-like proteins and transmembrane-coiled coil domains. Based on a high-density double-digest restriction-site associated DNA sequencing-based linkage map, the genome assembly was anchored to six pseudomolecules representing ∼73.5% of the whole genome assembly. In addition, we used SOL_r1.1 to identify quantitative trait loci for bolting timing and fruit/seed shape, which harbour biologically plausible candidate genes, such as homologues of the FLOWERING LOCUS T and EPIDERMAL PATTERNING FACTOR-LIKE genes. The new genome assembly, SOL_r1.1, will serve as a useful resource for identifying loci associated with important agronomic traits and for developing molecular markers for spinach breeding/selection programs.


Asunto(s)
Frutas/genética , Genoma de Planta , Sitios de Carácter Cuantitativo , Spinacia oleracea/genética , Secuenciación Completa del Genoma , Frutas/anatomía & histología , Genes de Plantas , Ligamiento Genético , Semillas/anatomía & histología , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA