Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Plant Pathol ; 19(3): 634-646, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28220595

RESUMEN

Chloroplasts can act as key players in the perception and acclimatization of plants to incoming environmental signals. A growing body of evidence indicates that chloroplasts play a critical role in plant immunity. Chloroplast function can be regulated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp]. In plants, (p)ppGpp levels increase in response to abiotic stress and to plant hormones which are involved in abiotic and biotic stress signalling. In this study, we analysed the transcriptome of Arabidopsis plants that over-accumulate (p)ppGpp, and unexpectedly found a decrease in the levels of a broad range of transcripts for plant defence and immunity. To determine whether (p)ppGpp is involved in the modulation of plant immunity, we analysed the susceptibility of plants with different levels of (p)ppGpp to Turnip mosaic virus (TuMV) carrying a green fluorescent protein (GFP) reporter. We found that (p)ppGpp accumulation was associated with increased susceptibility to TuMV and reduced levels of the defence hormone salicylic acid (SA). In contrast, plants with lower (p)ppGpp levels showed reduced susceptibility to TuMV, and this was associated with the precocious up-regulation of defence-related genes and increased SA content. We have therefore demonstrated a new link between (p)ppGpp metabolism and plant immunity in Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/virología , Guanosina Tetrafosfato/metabolismo , Potyvirus/patogenicidad , Ácido Salicílico/metabolismo , Cloroplastos/metabolismo , Inmunidad de la Planta/fisiología , Potyvirus/inmunología
2.
Plant Cell ; 28(3): 661-79, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26908759

RESUMEN

The chloroplast originated from the endosymbiosis of an ancient photosynthetic bacterium by a eukaryotic cell. Remarkably, the chloroplast has retained elements of a bacterial stress response pathway that is mediated by the signaling nucleotides guanosine penta- and tetraphosphate (ppGpp). However, an understanding of the mechanism and outcomes of ppGpp signaling in the photosynthetic eukaryotes has remained elusive. Using the model plant Arabidopsis thaliana, we show that ppGpp is a potent regulator of chloroplast gene expression in vivo that directly reduces the quantity of chloroplast transcripts and chloroplast-encoded proteins. We then go on to demonstrate that the antagonistic functions of different plant RelA SpoT homologs together modulate ppGpp levels to regulate chloroplast function and show that they are required for optimal plant growth, chloroplast volume, and chloroplast breakdown during dark-induced and developmental senescence. Therefore, our results show that ppGpp signaling is not only linked to stress responses in plants but is also an important mediator of cooperation between the chloroplast and the nucleocytoplasmic compartment during plant growth and development.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Cloroplastos/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Senescencia Celular , Clorofila/metabolismo , Genes Reporteros , Mutación , Fenotipo , Proteínas Recombinantes de Fusión , Ribulosa-Bifosfato Carboxilasa/metabolismo , Estrés Fisiológico
3.
Plant Cell ; 22(6): 1936-46, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20525852

RESUMEN

ABSCISIC ACID INSENSITIVE3 (ABI3) is a major regulator of seed maturation in Arabidopsis thaliana. We detected two ABI3 transcripts, ABI3-alpha and ABI3-beta, which encode full-length and truncated proteins, respectively. Alternative splicing of ABI3 is developmentally regulated, and the ABI3-beta transcript accumulates at the end of seed maturation. The two ABI3 transcripts differ by the presence of a cryptic intron in ABI3-alpha, which is spliced out in ABI3-beta. The suppressor of abi3-5 (sua) mutant consistently restores wild-type seed features in the frameshift mutant abi3-5 but does not suppress other abi3 mutant alleles. SUA is a conserved splicing factor, homologous to the human protein RBM5, and reduces splicing of the cryptic ABI3 intron, leading to a decrease in ABI3-beta transcript. In the abi3-5 mutant, ABI3-beta codes for a functional ABI3 protein due to frameshift restoration.


Asunto(s)
Empalme Alternativo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ARN/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Mapeo Cromosómico , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación , Intrones , Datos de Secuencia Molecular , Mutación , Filogenia , ARN de Planta/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción
4.
New Phytol ; 184(4): 898-908, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19754639

RESUMEN

*Seed longevity is an important trait in many crops and is essential for the success of most land plant species. Current knowledge of its molecular regulation is limited. The Arabidopsis mutants abscisic acid insensitive3-5 (abi3-5) and leafy cotyledon1-3 (lec1-3) have impaired seed maturation and quickly lose seed viability. abi3-5 and lec1-3 were used as sensitized genetic backgrounds for the study of seed longevity. *We exploited the natural variation of Arabidopsis to create introgression lines from the Seis am Schlern and Shahdara accessions in, respectively, the abi3-5 and lec1-3 backgrounds. These lines carry natural modifiers of the abi3 and lec1 phenotypes. Longevity tests and a proteomic analysis were conducted to describe the seed physiology of each line. *The modifier lines showed improved seed longevity. The Shahdara modifiers can partially re-establish the seed developmental programs controlled by LEC1 and restore the accumulation of seed storage proteins that are reduced in abi3-5 and lec1-3. *The isolation and characterization of natural modifiers of the seed maturation mutants abi3-5 and lec1-3, and the analysis of their seed proteomes, advance our current understanding of seed longevity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Genes de Plantas , Fosfoproteínas Fosfatasas/metabolismo , Semillas/fisiología , Ácido Abscísico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Mutación , Fenotipo , Fosfoproteínas Fosfatasas/genética , Plantas Modificadas Genéticamente , Proteómica , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA