Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Bone Metab ; 30(2): 127-140, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37449346

RESUMEN

Osteoclasts are multinucleated bone-resorbing cells and a key player in bone remodeling for health and disease. Since the discovery of osteoclasts in 1873, the structure and function of osteoclasts and the molecular and cellular mechanisms of osteoclastogenesis have been extensively studied. Moreover, it has been well established that osteoclasts are differentiated in vitro from myeloid cells such as bone marrow macrophages or monocytes. The concept showing that osteoclasts are derived from a specific population (named osteoclast precursor cells [OCPs]) among myeloid cells has been long hypothesized. However, the specific precursor population of osteoclasts is not clearly defined yet. A growing body of work provides evidence of the developmental origin and lifespan of murine osteoclasts, particularly in vivo. Here, we review the emerging evidence that supports the existence of OCPs and discuss current insights into their identity.

2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834948

RESUMEN

Cardiovascular complications are seen among human immunodeficiency virus (HIV)-positive individuals, who now survive longer due to successful antiretroviral therapies. Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased blood pressure in the lung circulation. The prevalence of PAH in the HIV-positive population is dramatically higher than that in the general population. While HIV-1 Group M Subtype B is the most prevalent subtype in western countries, the majority of HIV-1 infections in eastern Africa and former Soviet Union countries are caused by Subtype A. Research on vascular complications in the HIV-positive population in the context of subtype differences, however, has not been rigorous. Much of the research on HIV has focused on Subtype B, and information on the mechanisms of Subtype A is nonexistent. The lack of such knowledge results in health disparities in the development of therapeutic strategies to prevent/treat HIV complications. The present study examined the effects of HIV-1 gp120 of Subtypes A and B on human pulmonary artery endothelial cells by performing protein arrays. We found that the gene expression changes caused by gp120s of Subtypes A and B are different. Subtype A is a more potent downregulator of perostasin, matrix metalloproteinase-2, and ErbB than Subtype B, while Subtype B is more effective in downregulating monocyte chemotactic protein-2 (MCP-2), MCP-3, and thymus- and activation-regulated chemokine proteins. This is the first report of gp120 proteins affecting host cells in an HIV subtype-specific manner, opening up the possibility that complications occur differently in HIV patients throughout the world.


Asunto(s)
Células Endoteliales , Expresión Génica , Proteína gp120 de Envoltorio del VIH , Infecciones por VIH , VIH-1 , Humanos , Células Endoteliales/metabolismo , Hipertensión Pulmonar Primaria Familiar/virología , Glicoproteínas/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/genética , VIH-1/patogenicidad , Metaloproteinasa 2 de la Matriz/metabolismo
3.
bioRxiv ; 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36711442

RESUMEN

Cardiovascular complications are seen among human immunodeficiency virus (HIV)-positive individuals who can now survive longer due to successful antiretroviral therapies. Among them, pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased blood pressure in the lung circulation due to vasoconstriction and vascular wall remodeling, resulting in the overworking of the heart. The prevalence of PAH in the HIVpositive population is dramatically higher than that in the general population. While HIV-1 Group M Subtype B is the most prevalent subtype in western countries, the majority of HIV-1 infections in eastern Africa and former Soviet Union countries are caused by Subtype A. Research on the mechanism of vascular complications in the HIV-positive population, especially in the context of subtype differences, however, has not been rigorous. Much of the research on HIV has focused on Subtype B and information on the molecular mechanisms of Subtype A is non-existent. The lack of such knowledge results in health disparities in the development of therapeutic strategies to prevent/treat HIV complications. The present study examined the effects of HIV-1 viral fusion protein gp120 of Subtypes A and B on cultured human pulmonary artery endothelial cells by performing protein arrays. We found that the gene expression changes caused by the gp120s of Subtypes A and B are different. Specifically, Subtype A is a more potent downregulator of perostasin, matrix metalloproteinase-2 (MMP-2), and ErbB/Her3 than Subtype B, while Subtype B is more effective in downregulating monocyte chemotactic protein-2 (MCP-2/CCL8), MCP-3 (CCL7), and thymus- and activation-regulated chemokine (TARC/CCL17) proteins. This is the first report of gp120 proteins affecting host cells in an HIV subtype-specific manner, opening up the possibility that vascular complications may occur differently in HIV patients throughout the world.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...