Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cells ; 34(4): 1068-82, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27095138

RESUMEN

Folliculin (FLCN) is an autosomal dominant tumor suppressor gene that modulates diverse signaling pathways required for growth, proliferation, metabolism, survival, motility, and adhesion. FLCN is an essential protein required for murine embryonic development, embryonic stem cell (ESC) commitment, and Drosophila germline stem cell maintenance, suggesting that Flcn may be required for adult stem cell homeostasis. Conditional inactivation of Flcn in adult hematopoietic stem/progenitor cells (HSPCs) drives hematopoietic stem cells (HSC) into proliferative exhaustion resulting in the rapid depletion of HSPC, loss of all hematopoietic cell lineages, acute bone marrow (BM) failure, and mortality after 40 days. HSC that lack Flcn fail to reconstitute the hematopoietic compartment in recipient mice, demonstrating a cell-autonomous requirement for Flcn in HSC maintenance. BM cells showed increased phosphorylation of Akt and mTorc1, and extramedullary hematopoiesis was significantly reduced by treating mice with rapamycin in vivo, suggesting that the mTorc1 pathway was activated by loss of Flcn expression in hematopoietic cells in vivo. Tfe3 was activated and preferentially localized to the nucleus of Flcn knockout (KO) HSPCs. Tfe3 overexpression in HSPCs impaired long-term hematopoietic reconstitution in vivo, recapitulating the Flcn KO phenotype, and supporting the notion that abnormal activation of Tfe3 contributes to the Flcn KO phenotype. Flcn KO mice develop an acute histiocytic hyperplasia in multiple organs, suggesting a novel function for Flcn in macrophage development. Thus, Flcn is intrinsically required to maintain adult HSC quiescence and homeostasis, and Flcn loss leads to BM failure and mortality in mice.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Diferenciación Celular/genética , Estrona/genética , Células Madre Hematopoyéticas/patología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células de la Médula Ósea/patología , Linaje de la Célula/genética , Proliferación Celular/genética , Desarrollo Embrionario/genética , Células Madre Hematopoyéticas/metabolismo , Homeostasis/genética , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Noqueados
2.
Blood ; 120(6): 1254-61, 2012 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-22709692

RESUMEN

Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant disorder characterized by cutaneous fibrofolliculomas, pulmonary cysts, and kidney malignancies. Affected individuals carry germ line mutations in folliculin (FLCN), a tumor suppressor gene that becomes biallelically inactivated in kidney tumors by second-hit mutations. Similar to other factors implicated in kidney cancer, FLCN has been shown to modulate activation of mammalian target of rapamycin (mTOR). However, its precise in vivo function is largely unknown because germ line deletion of Flcn results in early embryonic lethality in animal models. Here, we describe mice deficient in the newly characterized folliculin-interacting protein 1 (Fnip1). In contrast to Flcn, Fnip1(-/-) mice develop normally, are not susceptible to kidney neoplasia, but display a striking pro-B cell block that is entirely independent of mTOR activity. We show that this developmental arrest results from rapid caspase-induced pre-B cell death, and that a Bcl2 transgene reconstitutes mature B-cell populations, respectively. We also demonstrate that conditional deletion of Flcn recapitulates the pro-B cell arrest of Fnip1(-/-) mice. Our studies thus demonstrate that the FLCN-FNIP complex deregulated in BHD syndrome is absolutely required for B-cell differentiation, and that it functions through both mTOR-dependent and independent pathways.


Asunto(s)
Linfocitos B/fisiología , Síndrome de Birt-Hogg-Dubé/genética , Proteínas Portadoras/genética , Diferenciación Celular/genética , Eliminación de Gen , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Diferenciación Celular/inmunología , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Especificidad de la Especie , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología
3.
Blood ; 114(6): 1186-95, 2009 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-19478045

RESUMEN

Development of hematopoietic stem cells (HSCs) and their immediate progeny is maintained by the interaction with cells in the microenvironment. We found that hematopoiesis was dysregulated in Id1(-/-) mice. Although the frequency of HSCs in Id1(-/-) bone marrow was increased, their total numbers remained unchanged as the result of decreased bone marrow cellularity. In addition, the ability of Id1(-/-) HSCs to self-renew was normal, suggesting Id1 does not affect HSC function. Id1(-/-) progenitors showed increased cycling in vivo but not in vitro, suggesting cell nonautonomous mechanisms for the increased cycling. Id1(-/-) HSCs developed normally when transplanted into Id1(+/+) mice, whereas the development of Id1(+/+) HSCs was impaired in Id1(-/-) recipients undergoing transplantation and reproduced the hematologic features of Id1(-/-) mice, indicating that the Id1(-/-) microenvironment cannot support normal hematopoietic development. Id1(-/-) stromal cells showed altered production of cytokines in vitro, and cytokine levels were deregulated in vivo, which could account for the Id1(-/-) hematopoietic phenotypes. Thus, Id1 is required for regulating the hematopoietic progenitor cell niche but is dispensable for maintaining HSCs.


Asunto(s)
Médula Ósea/metabolismo , Ciclo Celular/fisiología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Animales , Citocinas/metabolismo , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Ratones , Ratones Noqueados , Células del Estroma/citología , Células del Estroma/metabolismo
4.
Blood ; 112(4): 1068-77, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18523151

RESUMEN

Inhibitors of DNA binding (Id) family members are key regulators of cellular differentiation and proliferation. These activities are related to the ability of Id proteins to antagonize E proteins and other transcription factors. As negative regulators of E proteins, Id proteins have been implicated in lymphocyte development. Overexpression of Id1, Id2, or Id3 has similar effects on lymphocyte development. However, which Id protein plays a physiologic role during lymphocyte development is not clear. By analyzing Id2 knock-out mice and retroviral transduced hematopoietic progenitors, we demonstrated that Id2 is an intrinsic negative regulator of B-cell development. Hematopoietic progenitor cells overexpressing Id2 did not reconstitute B-cell development in vivo, which resembled the phenotype of E2A null mice. The B-cell population in bone marrow was significantly expanded in Id2 knock-out mice compared with their wild-type littermates. Knock-down of Id2 by shRNA in hematopoietic progenitor cells promoted B-cell differentiation and induced the expression of B-cell lineage-specific genes. These data identified Id2 as a physiologically relevant regulator of E2A during B lymphopoiesis. Furthermore, we identified a novel Id2 function in erythroid development. Overexpression of Id2 enhanced erythroid development, and decreased level of Id2 impaired normal erythroid development. Id2 regulation of erythroid development is mediated via interacting with transcription factor PU.1 and modulating PU.1 and GATA-1 activities. We conclude that Id2 regulates lymphoid and erythroid development via interaction with different target proteins.


Asunto(s)
Linfocitos B/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Linaje de la Célula , Células Eritroides/citología , Factor de Transcripción GATA1/fisiología , Proteína 2 Inhibidora de la Diferenciación/fisiología , Proteínas Proto-Oncogénicas/fisiología , Transactivadores/fisiología , Animales , Médula Ósea , Eritropoyesis , Células Madre Hematopoyéticas , Proteína 2 Inhibidora de la Diferenciación/genética , Linfocitos/citología , Linfopoyesis , Ratones , Ratones Noqueados , Unión Proteica/fisiología
5.
Epigenetics ; 3(3): 134-42, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18487951

RESUMEN

Hematopoietic malignancies are frequently associated with DNA hypomethylation but the molecular mechanisms involved in tumor formation remain poorly understood. Here we report that mice lacking Lsh develop leukemia associated with DNA hypomethylation and oncogene activation. Lsh is a member of the SNF2 chromatin remodeling family and is required for de novo methylation of genomic DNA. Mice that received Lsh deficient hematopoietic progenitors showed severe impairment of hematopoiesis, suggesting that Lsh is necessary for normal hematopoiesis. A subset of mice developed erythroleukemia, a tumor that does not spontaneously occur in mice. Tumor tissues were CpG hypomethylated and showed a modest elevation of the transcription factor PU.1, an oncogene that is crucial for Friend virus induced erythroleukemia. Analysis of Lsh(-/-) hematopoietic progenitors revealed widespread DNA hypomethylation at repetitive sequences and hypomethylation at specific retroviral elements within the PU.1 gene. Wild type cells showed Lsh and Dnmt3b binding at the retroviral elements located within the PU.1 gene. On the other hand, Lsh deficient cells had no detectable Dnmt3b association suggesting that Lsh is necessary for recruitment of Dnmt3b to its target. Furthermore, Lsh(-/-) hematopoietic precursors showed impaired suppression of retroviral elements in the PU.1 gene, an increase of PU.1 transcripts and protein levels. Thus DNA hypomethylation caused by Lsh depletion is linked to transcriptional upregulation of retroviral elements and oncogenes such as PU.1 which in turn may promote the development of erythroleukemia in mice.


Asunto(s)
ADN Helicasas/deficiencia , Metilación de ADN , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/patología , Animales , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Helicasas/genética , Regulación de la Expresión Génica , Hematopoyesis/genética , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Retroviridae , Transactivadores/genética , ADN Metiltransferasa 3B
6.
Dev Cell ; 10(5): 563-73, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16678773

RESUMEN

Mouse knockouts of Cdk2 and Cdk4 have demonstrated that, individually, these genes are not essential for viability. To investigate whether there is functional redundancy, we have generated double knockout (DKO) mice. Cdk2-/- Cdk4-/- DKOs die during embryogenesis around E15 as a result of heart defects. We observed a gradual decrease of Retinoblastoma protein (Rb) phosphorylation and reduced expression of E2F-target genes, like Cdc2 and cyclin A2, during embryogenesis and in embryonic fibroblasts (MEFs). DKO MEFs are characterized by a decreased proliferation rate, impaired S phase entry, and premature senescence. HPV-E7-mediated inactivation of Rb restored normal expression of E2F-inducible genes, senescence, and proliferation in DKO MEFs. In contrast, loss of p27 did not rescue Cdk2-/- Cdk4-/- phenotypes. Our results demonstrate that Cdk2 and Cdk4 cooperate to phosphorylate Rb in vivo and to couple the G1/S phase transition to mitosis via E2F-dependent regulation of gene expression.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/deficiencia , Quinasa 4 Dependiente de la Ciclina/deficiencia , Embrión de Mamíferos/anomalías , Proteína de Retinoblastoma/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/genética , Factores de Transcripción E2F/antagonistas & inhibidores , Fibroblastos/citología , Silenciador del Gen , Hematopoyesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus , Fenotipo , Fosforilación , Proteína de Retinoblastoma/antagonistas & inhibidores , Proteína de Retinoblastoma/química
7.
Blood ; 107(11): 4308-16, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16469877

RESUMEN

C/EBPalpha is an essential transcription factor required for myeloid differentiation. While C/EBPalpha can act as a cell fate switch to promote granulocyte differentiation in bipotential granulocyte-macrophage progenitors (GMPs), its role in regulating cell fate decisions in more primitive progenitors is not known. We found increased numbers of erythroid progenitors and erythroid cells in C/EBPalpha(-/-) fetal liver (FL). Also, enforced expression of C/EBPalpha in hematopoietic stem cells resulted in a loss of erythroid progenitors and an increase in myeloid cells by inhibition of erythroid development and inducing myeloid differentiation. Conditional expression of C/EBPalpha in murine erythroleukemia (MEL) cells induced myeloid-specific genes, while inhibiting erythroid-specific gene expression including erythropoietin receptor (EpoR), which suggests a novel mechanism to determine hematopoietic cell fate. Thus, C/EBPalpha functions in hematopoietic cell fate decisions by the dual actions of inhibiting erythroid and inducing myeloid gene expression in multipotential progenitors.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/fisiología , Diferenciación Celular , Células Eritroides/citología , Hematopoyesis , Células Madre Multipotentes/citología , Células Mieloides/citología , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Recuento de Células , Células Cultivadas , Regulación de la Expresión Génica/fisiología , Hígado/citología , Hígado/embriología , Ratones , Ratones Noqueados , Receptores de Eritropoyetina/genética , Transfección
8.
Blood ; 104(6): 1639-47, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15073037

RESUMEN

CCAAT enhancer binding protein-alpha (C/EBPalpha) inhibits proliferation in multiple cell types; therefore, we evaluated whether C/EBPalpha-deficient hematopoietic progenitor cells (HPCs) have an increased proliferative potential in vitro and in vivo. In this study we demonstrate that C/EBPalpha(-/-) fetal liver (FL) progenitors are hyperproliferative, show decreased differentiation potential, and show increased self-renewal capacity in response to hematopoietic growth factors (HGFs). There are fewer committed bipotential progenitors in C/EBPalpha(-/-) FL, whereas multipotential progenitors are unaffected. HGF-dependent progenitor cell lines can be derived by directly culturing C/EBPalpha(-/-) FL cells in vitro Hyperproliferative spleen colonies and myelodysplastic syndrome (MDS) are observed in mice reconstituted with C/EBPalpha(-/-) FL cells, indicating progenitor hyperproliferation in vitro and in vivo. C/EBPalpha(-/-) FL lacked macrophage progenitors in vitro and had impaired ability to generate macrophages in vivo. These findings show that C/EBPalpha deficiency results in hyperproliferation of HPCs and a block in the ability of multipotential progenitors to differentiate into bipotential granulocyte/macrophage progenitors and their progeny.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/deficiencia , Diferenciación Celular , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Macrófagos/metabolismo , Macrófagos/patología , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Trasplante de Células , Células Cultivadas , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/efectos de los fármacos , Factor de Crecimiento de Hepatocito/farmacología , Interleucina-3/metabolismo , Hígado/embriología , Hígado/metabolismo , Hígado/patología , Macrófagos/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Tasa de Supervivencia
9.
Leuk Res ; 26(4): 369-76, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11839380

RESUMEN

As a part of our continuing efforts to develop gene therapy for acute myelogenous leukemia (AML), this study was undertaken to evaluate the possibility of using autologous bone marrow stromal fibroblasts (BMSFs) as a target cell population. Autologous BMSFs in AML were isolated from the stromal layers of long-term bone marrow culture (LTBMC) using immunomagnetic beads. BMSFs exhibited rapid proliferation even in the absence of growth factors. Cultures stimulated with bFGF produced significantly increased numbers of BMSFs than cultures without added growth factors. Using LNC/LacZ retroviral vector, the transduction efficiency of BMSFs was 13+/-4% at a 5 multiplicity of infection (MOI). LNC/interleukin-2 (IL-2)-transduced BMSFs produced between 1200 and 4800pg of IL-2/10(6) cells per 24h. Using adenoviral vector AdV/LacZ, the transduction efficiency was 84+/-10% at 100, and 92+/-8% at a MOI of 1000. Although the addition of basic fibroblast growth factor, epidermal growth factor, or platelet-derived growth factor did not affect the transduction efficiency, they increased the numbers of transduced cells significantly (P<0.01). AdV/IL-2-treated BMSFs produced high levels of IL-2 over the course of 7 days between 9820 and 22,700pg of IL-2/10(6) cells per 24h. Our finding that the genetically engineered autologous BMSFs of AML could be successfully established in vitro implies that BMSFs obtained from LTBMC might be considered as a target cell population for certain types of clinical gene therapy in AML.


Asunto(s)
Células de la Médula Ósea/patología , Terapia Genética , Leucemia Mieloide Aguda/patología , Células del Estroma/patología , Transducción Genética , Células Tumorales Cultivadas , Adenoviridae , Células de la Médula Ósea/fisiología , Trasplante de Médula Ósea , Ingeniería Genética , Terapia Genética/métodos , Vectores Genéticos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Células del Estroma/fisiología , Factores de Tiempo , Trasplante Autólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...