Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 291(9): 1992-2008, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362806

RESUMEN

The nucleoside inosine is a main intermediate of purine nucleotide catabolism in Saccharomyces cerevisiae and is produced via the dephosphorylation of inosine monophosphate (IMP) by IMP-specific 5'-nucleotidase 1 (ISN1), which is present in many eukaryotic organisms. Upon transition of yeast from oxidative to fermentative growth, ISN1 is important for intermediate inosine accumulation as purine storage, but details of ISN1 regulation are unknown. We characterized structural and kinetic behavior of ISN1 from S. cerevisiae (ScISN1) and showed that tetrameric ScISN1 is negatively regulated by inosine and adenosine triphosphate (ATP). Regulation involves an inosine-binding allosteric site along with IMP-induced local and global conformational changes in the monomer and a tetrameric re-arrangement, respectively. A proposed interaction network propagates local conformational changes in the active site to the intersubunit interface, modulating the allosteric features of ScISN1. Via ATP and inosine, ScISN1 activity is likely fine-tuned to regulate IMP and inosine homeostasis. These regulatory and catalytic features of ScISN1 contrast with those of the structurally homologous ISN1 from Plasmodium falciparum, indicating that ISN1 enzymes may serve different biological purposes in different organisms.


Asunto(s)
Adenosina Trifosfato , Sitio Alostérico , Inosina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Inosina/metabolismo , Cinética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Dominio Catalítico , Regulación Alostérica , Cristalografía por Rayos X , Inosina Monofosfato/metabolismo , Modelos Moleculares , Conformación Proteica , Unión Proteica
2.
Nucleic Acids Res ; 51(21): 11941-11951, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37897358

RESUMEN

Bacteriophages (phages) are viruses that infect bacteria and archaea. To fend off invading phages, the hosts have evolved a variety of anti-phage defense mechanisms. Gabija is one of the most abundant prokaryotic antiviral systems and consists of two proteins, GajA and GajB. GajA has been characterized experimentally as a sequence-specific DNA endonuclease. Although GajB was previously predicted to be a UvrD-like helicase, its function is unclear. Here, we report the results of structural and functional analyses of GajB. The crystal structure of GajB revealed a UvrD-like domain architecture, including two RecA-like core and two accessory subdomains. However, local structural elements that are important for the helicase function of UvrD are not conserved in GajB. In functional assays, GajB did not unwind or bind various types of DNA substrates. We demonstrated that GajB interacts with GajA to form a heterooctameric Gabija complex, but GajB did not exhibit helicase activity when bound to GajA. These results advance our understanding of the molecular mechanism underlying Gabija anti-phage defense and highlight the role of GajB as a component of a multi-subunit antiviral complex in bacteria.


Asunto(s)
Bacillus cereus , Bacteriófagos , Antivirales , Bacterias/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , ADN , ADN Helicasas/metabolismo , Proteínas , Bacillus cereus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Hortic Res ; 10(1): uhac246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36643742

RESUMEN

Chimeric plants composed of green and albino tissues have great ornamental value. To unveil the functional genes responsible for albino phenotypes in chimeric plants, we inspected the complete plastid genomes (plastomes) in green and albino leaf tissues from 23 ornamental chimeric plants belonging to 20 species, including monocots, dicots, and gymnosperms. In nine chimeric plants, plastomes were identical between green and albino tissues. Meanwhile, another 14 chimeric plants were heteroplasmic, showing a mutation between green and albino tissues. We identified 14 different point mutations in eight functional plastid genes related to plastid-encoded RNA polymerase (rpo) or photosystems which caused albinism in the chimeric plants. Among them, 12 were deleterious mutations in the target genes, in which early termination appeared due to small deletion-mediated frameshift or single nucleotide substitution. Another was single nucleotide substitution in an intron of the ycf3 and the other was a missense mutation in coding region of the rpoC2 gene. We inspected chlorophyll structure, protein functional model of the rpoC2, and expression levels of the related genes in green and albino tissues of Reynoutria japonica. A single amino acid change, histidine-to-proline substitution, in the rpoC2 protein may destabilize the peripheral helix of plastid-encoded RNA polymerase, impairing the biosynthesis of the photosynthesis system in the albino tissue of R. japonica chimera plant.

4.
Nat Cell Biol ; 24(8): 1239-1251, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941365

RESUMEN

Ferroptosis is a unique form of cell death caused by excessive iron-dependent lipid peroxidation. The level of the anabolic reductant NADPH is a biomarker of ferroptosis sensitivity. However, specific regulators that detect cellular NADPH levels, thereby modulating downstream ferroptosis cascades, are largely unknown. We show here that the transmembrane endoplasmic reticulum MARCHF6 E3 ubiquitin ligase recognizes NADPH through its C-terminal regulatory region. This interaction upregulates the E3 ligase activity of MARCHF6, thus downregulating ferroptosis. We also found that MARCHF6 mediates the degradation of the key ferroptosis effectors ACSL4 and p53. Furthermore, inhibiting ferroptosis rescued the growth of MARCHF6-deficient tumours and peri-natal lethality of Marchf6-/- mice. Together, these findings identify MARCHF6 as a previously unknown NADPH sensor in the ubiquitin system and a crucial regulator of ferroptosis.


Asunto(s)
Ferroptosis , Animales , Muerte Celular , Ferroptosis/genética , Peroxidación de Lípido/fisiología , Ratones , NADP/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Nucleic Acids Res ; 50(4): 2363-2376, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35166843

RESUMEN

Bacteria and archaea use the CRISPR-Cas system to fend off invasions of bacteriophages and foreign plasmids. In response, bacteriophages encode anti-CRISPR (Acr) proteins that potently inhibit host Cas proteins to suppress CRISPR-mediated immunity. AcrIE4-F7, which was isolated from Pseudomonas citronellolis, is a fused form of AcrIE4 and AcrIF7 that inhibits both type I-E and type I-F CRISPR-Cas systems. Here, we determined the structure of AcrIE4-F7 and identified its Cas target proteins. The N-terminal AcrIE4 domain adopts a novel α-helical fold that targets the PAM interaction site of the type I-E Cas8e subunit. The C-terminal AcrIF7 domain exhibits an αß fold like native AcrIF7, which disables target DNA recognition by the PAM interaction site in the type I-F Cas8f subunit. The two Acr domains are connected by a flexible linker that allows prompt docking onto their cognate Cas8 targets. Conserved negative charges in each Acr domain are required for interaction with their Cas8 targets. Our results illustrate a common mechanism by which AcrIE4-F7 inhibits divergent CRISPR-Cas types.


Asunto(s)
Bacteriófagos , Proteínas Asociadas a CRISPR , Bacteriófagos/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/metabolismo , Proteínas Virales/metabolismo
6.
Mater Sci Eng C Mater Biol Appl ; 128: 112350, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34474899

RESUMEN

At the initial stage of wound healing, growth factors stimulate tissue regeneration by interacting with the extracellular matrix (ECM), leading to rapid wound repair and structural support. Chicken eggshell membrane (ESM) is a low-cost and highly functional ECM biomaterial for tissue regeneration. However, natural ESM has limitations for tissue engineering purposes because it is difficult to control the size, shape, and biocompatibility of the surfaces. To overcome this, blends of synthetic materials and natural ESMs, such as soluble eggshell membrane protein, are combined for biomaterial applications. Unfortunately, it is difficult to pattern fibrous structure. Here, we modified the natural chicken ESM through weak acid treatment to promote wound healing and skin regeneration without loss of fibrous structure. Treatment of citric acid and acetic acid reacted the amine or amide group with carboxyl groups (R-COOH) and achieved hydrophilicity for adherence of proliferating regenerative cells. Our in vitro study revealed that the modified ESM scaffolds significantly promoted human dermal fibroblasts adhesion, viability, proliferation, and cytokine secretion, compared with natural ESM. In addition, the modified ESM accelerated skin regeneration and enhanced the wound healing process even at early stages in an in vivo rat wound model. Collectively, the modified ESM performed best for promoting skin regeneration, cytokine secretion, epidermal cell proliferation, and controlling the inflammatory response both in vitro and in vivo.


Asunto(s)
Pollos , Cáscara de Huevo , Animales , Ácidos Carboxílicos , Matriz Extracelular , Fibroblastos , Ratas , Piel , Andamios del Tejido , Cicatrización de Heridas
7.
CRISPR J ; 4(3): 448-458, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34042500

RESUMEN

Anti-CRISPR (Acr) proteins are phage-borne inhibitors of the CRISPR-Cas immune system in archaea and bacteria. AcrIIC2 from prophages of Neisseria meningitidis disables the nuclease activity of type II-C Cas9, such that dimeric AcrIIC2 associates with the bridge helix (BH) region of Cas9 to compete with guide RNA loading. AcrIIC2 in solution readily assembles into oligomers of variable lengths, but the oligomeric states are not clearly understood. In this study, we investigated the dynamic assembly of AcrIIC2 oligomers, and identified key interactions underlying the self-association. We report that AcrIIC2 dimers associate into heterogeneous high-order oligomers with the equilibrium dissociation constant KD ∼8 µM. Oligomerization is driven by electrostatic interactions between charged residues, and rational mutagenesis produces a stable AcrIIC2 dimer with intact Cas9 binding. Remarkably, the BH peptide of Cas9 is unstructured in solution, and undergoes a coil-to-helix transition upon AcrIIC2 binding, revealing a unique folding-upon-binding mechanism for Acr recognition.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Proteínas Virales/metabolismo , Bacteriófagos/metabolismo , Edición Génica , Regulación Bacteriana de la Expresión Génica , Mutagénesis , Neisseria/virología , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , ARN Guía de Kinetoplastida/genética
8.
FASEB J ; 35(6): e21630, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33982347

RESUMEN

The acidic nuclear phosphoprotein 32 family member A (ANP32A) is a cellular host factor that determines the host tropism of the viral polymerase (vPol) of avian influenza viruses (AIVs). Compared with human ANP32A (hANP32A), chicken ANP32A contains an additional 33 amino acid residues (176-208) duplicated from amino acid residues 149-175 (27 residues), suggesting that these residues could be involved in increasing vPol activity by strengthening interactions between ANP32A and vPol. However, the molecular interactions and functional roles of the 27 residues within hANP32A during AIV vPol activity remain unclear. Here, we examined the functional role of 27 residues of hANP32A based on comparisons with other human (h) ANP32 family members. It was notable that unlike hANP32A and hANP32B, hANP32C could not support vPol activity or replication of AIVs, despite the fact that hANP32C shares a higher sequence identity with hANP32A than hANP32B. Pairwise comparison between hANP32A and hANP32C revealed that Asp149 (D149) and Asp152 (D152) are involved in hydrogen bonding and electrostatic interactions, respectively, which support vPol activity. Mutation of these residues reduced the interaction between hANP32A and vPol. Finally, we demonstrated that precise substitution of the identified residues within chicken ANP32A via homology-directed repair using the CRISPR/Cas9 system resulted in a marked reduction of viral replication in chicken cells. These results increase our understanding of ANP32A function and may facilitate the development of AIV-resistant chickens via precise modification of residues within ANP32A.


Asunto(s)
Ácido Aspártico/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Virus de la Influenza A/enzimología , Mutación , Proteínas Nucleares/metabolismo , Infecciones por Orthomyxoviridae/virología , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico/química , Ácido Aspártico/genética , Pollos , ADN Polimerasa Dirigida por ADN/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Infecciones por Orthomyxoviridae/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Homología de Secuencia , Proteínas Virales/genética
9.
Nucleic Acids Res ; 48(17): 9959-9968, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32810226

RESUMEN

The CRISPR-Cas system provides adaptive immunity for bacteria and archaea to combat invading phages and plasmids. Phages evolved anti-CRISPR (Acr) proteins to neutralize the host CRISPR-Cas immune system as a counter-defense mechanism. AcrIF7 in Pseudomonas aeruginosa prophages strongly inhibits the type I-F CRISPR-Cas system. Here, we determined the solution structure of AcrIF7 and identified its target, Cas8f of the Csy complex. AcrIF7 adopts a novel ß1ß2α1α2ß3 fold and interacts with the target DNA binding site of Cas8f. Notably, AcrIF7 competes with AcrIF2 for the same binding interface on Cas8f without common structural motifs. AcrIF7 binding to Cas8f is driven mainly by electrostatic interactions that require position-specific surface charges. Our findings suggest that Acrs of divergent origin may have acquired specificity to a common target through convergent evolution of their surface charge configurations.


Asunto(s)
Bacteriófagos/química , Sistemas CRISPR-Cas , Proteínas Virales/química , Bacteriófagos/genética , Bacteriófagos/patogenicidad , Sitios de Unión , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virología , Proteínas Virales/metabolismo
10.
Nucleic Acids Res ; 48(13): 7584-7594, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32544231

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide adaptive immunity to prokaryotes against invading phages and plasmids. As a countermeasure, phages have evolved anti-CRISPR (Acr) proteins that neutralize the CRISPR immunity. AcrIIA5, isolated from a virulent phage of Streptococcus thermophilus, strongly inhibits diverse Cas9 homologs, but the molecular mechanism underlying the Cas9 inhibition remains unknown. Here, we report the solution structure of AcrIIA5, which features a novel α/ß fold connected to an N-terminal intrinsically disordered region (IDR). Remarkably, truncation of the N-terminal IDR abrogates the inhibitory activity against Cas9, revealing that the IDR is essential for Cas9 inhibition by AcrIIA5. Progressive truncations and mutations of the IDR illustrate that the disordered region not only modulates the association between AcrIIA5 and Cas9-sgRNA, but also alters the catalytic efficiency of the inhibitory complex. The length of IDR is critical for the Cas9-sgRNA recognition by AcrIIA5, whereas the charge content of IDR dictates the inhibitory activity. Conformational plasticity of IDR may be linked to the broad-spectrum inhibition of Cas9 homologs by AcrIIA5. Identification of the IDR as the main determinant for Cas9 inhibition expands the inventory of phage anti-CRISPR mechanisms.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Virales/química , Bacteriófagos/química , Bacteriófagos/patogenicidad , Proteínas Intrínsecamente Desordenadas/metabolismo , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Dominios Proteicos , Streptococcus thermophilus/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
11.
J Mol Biol ; 432(14): 4010-4022, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32305460

RESUMEN

Auxin is a plant hormone that is central to plant growth and development from embryogenesis to senescence. Auxin signaling is mediated by auxin response transcription factors (ARFs) and Aux/IAA repressors that regulate the expression of a multitude of auxin response genes. ARF and Aux/IAA proteins assemble into homomeric and heteromeric complexes via their conserved PB1 domains. Here we report the first crystal structure of the PB1 complex between ARF5 and IAA17 of Arabidopsis thaliana, which represents the transcriptionally repressed state at low auxin levels. The PB1 domains assemble in a head-to-tail manner with a backbone arrangement similar to that of the ARF5:ARF5 PB1 complex. The ARF5:IAA17 complex, however, reveals distinct points of contact that promote the ARF5:IAA17 interaction over the ARF5:ARF5 interaction. Specifically, surface charges at the interface form salt-bridges that distinguish the homomeric and heteromeric complexes, revealing common and specific interfaces between transcriptionally repressed and derepressed states. Further, the salt-bridges can be reconfigured to switch the affinity between homomeric and heteromeric complexes in an incremental manner. The complex structure combined with quantitative binding analyses would be essential for deciphering the PB1 interaction code underlying the transcriptional regulation of auxin signaling.


Asunto(s)
Proteínas de Arabidopsis/ultraestructura , Arabidopsis/genética , Proteínas de Unión al ADN/ultraestructura , Semillas/genética , Factores de Transcripción/ultraestructura , Secuencia de Aminoácidos/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Conformación Proteica , Dominios Proteicos/genética , Semillas/crecimiento & desarrollo , Transducción de Señal/genética , Factores de Transcripción/genética
12.
Int J Mol Sci ; 21(7)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244797

RESUMEN

Human SNF5 and BAF155 constitute the core subunit of multi-protein SWI/SNF chromatin-remodeling complexes that are required for ATP-dependent nucleosome mobility and transcriptional control. Human SNF5 (hSNF5) utilizes its repeat 1 (RPT1) domain to associate with the SWIRM domain of BAF155. Here, we employed X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and various biophysical methods in order to investigate the detailed binding mechanism between hSNF5 and BAF155. Multi-angle light scattering data clearly indicate that hSNF5171-258 and BAF155SWIRM are both monomeric in solution and they form a heterodimer. NMR data and crystal structure of the hSNF5171-258/BAF155SWIRM complex further reveal a unique binding interface, which involves a coil-to-helix transition upon protein binding. The newly formed αN helix of hSNF5171-258 interacts with the ß2-α1 loop of hSNF5 via hydrogen bonds and it also displays a hydrophobic interaction with BAF155SWIRM. Therefore, the N-terminal region of hSNF5171-258 plays an important role in tumorigenesis and our data will provide a structural clue for the pathogenesis of Rhabdoid tumors and malignant melanomas that originate from mutations in the N-terminal loop region of hSNF5.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Mutación , Nucleosomas/genética , Proteína SMARCB1/genética , Factores de Transcripción/genética , Sitios de Unión/genética , Dicroismo Circular , Cristalografía por Rayos X , Regulación de la Expresión Génica , Humanos , Espectroscopía de Resonancia Magnética , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Nucleosomas/metabolismo , Unión Proteica , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patología , Proteína SMARCB1/química , Proteína SMARCB1/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
13.
FEBS J ; 286(23): 4661-4674, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31389128

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems constitute the adaptive immunity of bacteria and archaea, degrading nucleic acids of invading phages and plasmids. In response, phages employ anti-CRISPR (Acr) proteins as a counterdefense mechanism to neutralize the host immunity. AcrIIC3 directly inhibits target DNA cleavage of type II-C Cas9 of Neisseria meningitidis. Here, we show that AcrIIC3 interacts with the HNH nuclease domain of N. meningitidis Cas9 to inhibit its nuclease activity in an allosteric manner. The crystal structure of the AcrIIC3-HNH complex reveals that AcrIIC3 binds opposite the active site on the HNH nuclease domain. AcrIIC3 employs a unique interface for HNH, allowing it to discriminate between Cas9 orthologs, which contrasts with the broad spectrum of Cas9 inhibition by AcrIIC1. Interface residues of HNH provide key electrostatic and hydrophobic interactions that determine the host specificity of AcrIIC3. Mutations that replace HNH interfaces of N. meningitidis Cas9 with those of Geobacillus stearothermophilus Cas9 or Campylobacter jejuni Cas9 significantly attenuate AcrIIC3 binding, illustrating that the divergent interaction surface confers the host specificity of AcrIIC3. Our study demonstrates that the variable sequences of binding interface can define the target specificity of Acr proteins, suggesting potential applications in Cas9 control for gene editing.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Calorimetría , Campylobacter jejuni/genética , Cromatografía en Gel , Edición Génica , Geobacillus stearothermophilus/genética , Espectroscopía de Resonancia Magnética , Mutación/genética , Neisseria meningitidis/genética
14.
Structure ; 27(9): 1355-1365.e4, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31353242

RESUMEN

Phage endolysins are hydrolytic enzymes that cleave the bacterial cell wall during the lytic cycle. We isolated the bacteriophage PBC5 against Bacillus cereus, a major foodborne pathogen, and describe the molecular interaction between endolysin LysPBC5 and the host peptidoglycan structure. LysPBC5 has an N-terminal glycoside hydrolase 25 domain, and a C-terminal cell-wall binding domain (CBD) that is critical for specific cell-wall recognition and lysis. The crystal and solution structures of CBDs reveal tandem SH3b domains that are tightly engaged with each other. The CBD binds to the peptidoglycan in a bidentate manner via distal ß sheet motifs with pseudo 2-fold symmetry, which can explain its high affinity and host specificity. The CBD primarily interacts with the glycan strand of the peptidoglycan layer instead of the peptide crosslink, implicating the tertiary structure of peptidoglycan as the recognition motif of endolysins.


Asunto(s)
Bacillus cereus/virología , Bacteriófagos/patogenicidad , Endopeptidasas/química , Endopeptidasas/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Bacillus cereus/citología , Bacillus cereus/metabolismo , Bacteriófagos/metabolismo , Sitios de Unión , Pared Celular/química , Pared Celular/metabolismo , Cristalografía por Rayos X , Hidrólisis , Modelos Moleculares , Dominios Proteicos , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
16.
Sci Adv ; 4(6): eaar7063, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29868643

RESUMEN

Quorum sensing (QS), a bacterial process that regulates population-scale behavior, is mediated by small signaling molecules, called autoinducers (AIs), that are secreted and perceived, modulating a "collective" phenotype. Because the autoinducer AI-2 is secreted by a wide variety of bacterial species, its "perception" cues bacterial behavior. This response is mediated by the lsr (LuxS-regulated) operon that includes the AI-2 transporter LsrACDB and the kinase LsrK. We report that HPr, a phosphocarrier protein central to the sugar phosphotransferase system of Escherichia coli, copurifies with LsrK. Cocrystal structures of an LsrK/HPr complex were determined, and the effects of HPr and phosphorylated HPr on LsrK activity were assessed. LsrK activity is inhibited when bound to HPr, revealing new linkages between QS activity and sugar metabolism. These findings help shed new light on the abilities of bacteria to rapidly respond to changing nutrient levels at the population scale. They also suggest new means of manipulating QS activity among bacteria and within various niches.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Percepción de Quorum , Azúcares/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Metabolismo de los Hidratos de Carbono , Activación Enzimática , Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , Cinética , Modelos Moleculares , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
17.
Sci Rep ; 8(1): 9790, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955103

RESUMEN

In this study, we elucidated the mechanism underlying atmospheric pressure plasma (APP)-induced green discolouration of myoglobin. Green-coloured pigments are produced upon conversion of myoglobin into sulphmyoglobin, choleglobin, verdoheme, nitrihemin, or nitrimyoglobin. We exposed myoglobin dissolved in phosphate buffer to APP for 20 min and found a decrease in a* value (+redness/-greenness) and increase in b* value (+yellowness/-blueness) (P < 0.05). In the ultraviolet absorption spectrum, myoglobin treated with APP for 20 min showed absorption peaks at 503 and 630 nm, a spectrum different from that of sulphmyoglobin or choleglobin. The secondary structure and molecular weight of myoglobin were unaffected by APP treatment, excluding the possibility of verdoheme or nitrihemin formation. After APP treatment, nitrite was produced in myoglobin solution that provided a positive environment for nitrimyoglobin formation. However, the addition of 0.5% sodium dithionite, a strong reducing agent, to myoglobin solution resulted in the formation of deoxymyoglobin, which was subsequently converted to nitrosomyoglobin upon APP treatment to yield a desirable red colour. Thus, APP-induced green colouration in myoglobin solution is associated with nitrimyoglobin formation. The addition of the antioxidant resulted in the production of red colour in myoglobin solution after APP treatment owing to nitrosomyoglobin formation.


Asunto(s)
Presión Atmosférica , Mioglobina/metabolismo , Pigmentación , Gases em Plasma/química , Animales , Dicroismo Circular , Color , Caballos , Concentración de Iones de Hidrógeno , Nitratos/análisis , Nitritos/análisis , Espectrofotometría Ultravioleta
18.
Structure ; 26(6): 887-893.e2, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29779788

RESUMEN

Proteins assemble to form functional complexes via the progressive evolution of nonspecific complexes formed by transient encounters. This target search process generally involves multiple routes that lead the initial encounters to the final complex. In this study, we have employed NMR paramagnetic relaxation enhancement to visualize the encounter complexes between histidine-containing phosphocarrier protein and the N-terminal domain of enzyme I and demonstrate that protein association can be significantly enhanced by engineering on-pathways. Specifically, mutations in surface charges away from the binding interface can elicit new on-pathway encounter complexes, increasing their binding affinity by an order of magnitude. The structure of these encounter complexes indicates that such on-pathways extend the built-in target search process of the native protein complex. Furthermore, blocking on-pathways by countering mutations reverts their binding affinity. Our study thus illustrates that protein interactions can be engineered by rewiring the target search process.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Proteínas de Escherichia coli/química , Ingeniería Genética , Cinética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mutación , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Unión Proteica , Conformación Proteica
19.
Sci Rep ; 8(1): 3883, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29497118

RESUMEN

The bacterial CRISPR-Cas system provides adaptive immunity against invading phages. Cas9, an RNA-guided endonuclease, specifically cleaves target DNA substrates and constitutes a well-established platform for genome editing. Recently, anti-CRISPR (Acr) proteins that inhibit Cas9 have been discovered, promising a useful off-switch for Cas9 to avoid undesirable off-target effects. Here, we report the solution structure and dynamics of Listeria monocytogenes AcrIIA4 that inhibits Streptococcus pyogenes Cas9 (SpyCas9). AcrIIA4 forms a compact monomeric αßßßαα fold comprising three antiparallel ß strands flanked by three α-helices and a short 310-helix. AcrIIA4 exhibits distinct backbone dynamics in fast and slow timescales at loop regions that form interaction surfaces for SpyCas9. In particular, the ß1-ß2 loop that binds to the RuvC domain of SpyCas9 is highly mobile, and the ß1-ß2 and α2-α3 loops that bind to the RuvC and C-terminal domains of SpyCas9, respectively, undergoes conformational exchanges in microsecond-to-millisecond time scales. AcrIIA4 binds to apo-SpyCas9 with KD ~4.8 µM, which compares to KD ~0.6 nM for AcrIIA4 binding to sgRNA-bound SpyCas9. Since the binary complex between AcrIIA4 and SpyCas9 does not compete with the target DNA binding, it can effectively disable the Cas9 nuclease activity by forming a tight ternary complex in the presence of sgRNA.


Asunto(s)
Proteína 9 Asociada a CRISPR/antagonistas & inhibidores , Listeria monocytogenes/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , ADN/química , Endonucleasas/antagonistas & inhibidores , Endonucleasas/genética , Edición Génica/métodos , Listeria monocytogenes/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , ARN Guía de Kinetoplastida/genética , Streptococcus pyogenes/genética , Relación Estructura-Actividad
20.
Biomaterials ; 167: 58-68, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29554481

RESUMEN

Modern genetic techniques, enable the use of animal bioreactor systems for the production and functional enhancement of anti-cancer antibodies. Chicken is the most efficient animal bioreactor for the production of anti-cancer antibodies because of its relatively short generation time, plentiful reproductive capacity, and daily deposition in the egg white. Although several studies have focused on the production of anti-cancer antibodies in egg white, in-depth studies of the biological activity and physiological characteristics of transgenic chicken-derived anti-cancer antibodies have not been fully carried out. Here, we report the production of an anti-cancer monoclonal antibody against the CD20 protein from egg whites of transgenic hens, and validated the bio-functional activity of the protein in B-lymphoma and B-lymphoblast cells. Quantitative analysis showed that deposition of the chickenised CD20 monoclonal antibody (cCD20 mAb) from transgenic chickens increased in successive generations and with increasing transgene copy number. Ultra-performance liquid chromatography (UPLC) tandem mass spectrometry (LC/MS/MS) analysis showed that the cCD20 mAb exhibited 14 N-glycan patterns with high-mannose, afucosylation and terminal galactosylation. The cCD20 mAb did not exhibit significantly improved Fab-binding affinity, but showed markedly enhanced Fc-related functions, including complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) compared to commercial rituximab, a chimeric mAb against CD20. Our results suggest that the transgenic chicken bioreactor is an efficient system for producing anti-cancer therapeutic antibodies with enhanced Fc effector functions.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígenos CD20/inmunología , Antineoplásicos Inmunológicos/farmacología , Pollos/inmunología , Fragmentos Fc de Inmunoglobulinas/farmacología , Linfoma/tratamiento farmacológico , Animales , Animales Modificados Genéticamente/inmunología , Anticuerpos Monoclonales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Antineoplásicos Inmunológicos/inmunología , Línea Celular Tumoral , Proteínas del Sistema Complemento/inmunología , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Linfoma/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...