Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 189, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218989

RESUMEN

The presence of long-range interactions is crucial in distinguishing between abstract complex networks and wave systems. In photonics, because electromagnetic interactions between optical elements generally decay rapidly with spatial distance, most wave phenomena are modeled with neighboring interactions, which account for only a small part of conceptually possible networks. Here, we explore the impact of substantial long-range interactions in topological photonics. We demonstrate that a crystalline structure, characterized by long-range interactions in the absence of neighboring ones, can be interpreted as an overlapped lattice. This overlap model facilitates the realization of higher values of topological invariants while maintaining bandgap width in photonic topological insulators. This breaking of topology-bandgap tradeoff enables topologically protected multichannel signal processing with broad bandwidths. Under practically accessible system parameters, the result paves the way to the extension of topological physics to network science.

2.
Phys Rev Lett ; 132(3): 033803, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38307059

RESUMEN

Reducing geometrical complexity while preserving desired wave properties is critical for proof-of-concept studies in wave physics, as evidenced by recent efforts to realize photonic synthetic dimensions, isospectrality, and hyperbolic lattices. Laughlin's topological pump, which elucidates quantum Hall states in cylindrical geometry with a radial magnetic field and a time-varying axial magnetic flux, is a prime example of these efforts. Here we propose a two-dimensional dynamical photonic system for the topological pumping of pseudospin modes by exploiting synthetic frequency dimensions. The system provides the independent control of pseudomagnetic fields and electromotive forces achieved by the interplay between mode-dependent and mode-independent gauge fields. To address the axial open boundaries and azimuthal periodicity of the system, we define the adjusted local Chern marker with rotating azimuthal coordinates, proving the nontrivial topology of the system. We demonstrate the adiabatic pumping for crosstalk-free frequency conversion with wave front molding. Our approach allows for reproducing Laughlin's thought experiment at room temperature with a scalable setup.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA