Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Today Bio ; 25: 100988, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38379935

RESUMEN

The Pegylated lipids in lipid nanoparticle (LNPs) vaccines have been found to cause acute hypersensitivity reactions in recipients, and generate anti-LNPs immunity after repeated administration, thereby reducing vaccine effectiveness. To overcome these challenges, we developed a new type of LNPs vaccine (SAPC-LNPs) which was co-modified with sialic acid (SA) - lipid derivative and cleavable PEG - lipid derivative. This kind of mRNA vaccine can target dendritic cells (DCs) and rapidly escape from early endosomes (EE) and lysosomes with a total endosomal escape rate up to 98 %. Additionally, the PEG component in SAPC-LNPs was designed to detach from the LNPs under the catalysis of carboxylesterase in vivo, which reduced the probability of PEG being attached to LNPs entering antigen-presenting cells. Compared with commercially formulated vaccines (1.5PD-LNPs), mice treated with SAPC-LNPs generated a more robust immune memory to tumor antigens and a weaker immune memory response to LNPs, and showed lower side effects and long-lasting protective efficiency. We also discovered that the anti-tumor immune memory formed by SAPC-LNPs mRNA vaccine was directly involved in the immune cycle to rattack tumor. This immune memory continued to strengthen with multiple cycles, supporting that the immune memory should be incorporated into the theory of tumor immune cycle.

2.
J Liposome Res ; : 1-11, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38196168

RESUMEN

In different types of cancer treatments, cancer-specific T cells are required for effective anticancer immunity, which has a central role in cancer immunotherapy. However, due to the multiple inhibitions of CD8+ T cells by tumor-related immune cells, CD8+ T-cell mediated antitumor immunotherapy has not achieved breakthrough progress in the treatment of solid tumors. Receptors for sialic acid (SA) are highly expressed in tumor-associated immune cells, so SA-modified nanoparticles are a drug delivery nanoplatform using tumor-associated immune cells as vehicles. To relieve the multiple inhibitions of CD8+ T cells by tumor-associated immune cells, we prepared SA-modified doxorubicin liposomes (SL-DOX, Scheme 1A). In our study, free SA decreased the toxicity of SL-DOX to tumor-associated immune cells. Compared with common liposomes, SL-DOX could inhibit tumor growth more effectively. It is worth noting that SL-DOX could not only kill tumor-related neutrophils and monocytes to relieve the multiple inhibitions of CD8+ T cells but also induce immunogenic death of tumor cells to promote the infiltration and differentiation of CD8+ T cells (Scheme 1B). Therefore, SL-DOX has potential value for the clinical therapeutic effect of CD8+ T cells mediating anti-tumor immunotherapy.

3.
J Control Release ; 364: 529-545, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37949317

RESUMEN

mRNA vaccines are attractive prospects for the development of DC-targeted vaccines; however, no clinical success has been realized because, currently, it is difficult to simultaneously achieve DC targeting and efficient endosomal/lysosomal escape. Herein, we developed a sialic acid (SA)-modified mRNA vaccine that simultaneously achieved both. The SA modification promoted DCs uptake of lipid nanoparticles (LNPs) by 2 times, >90% of SA-modified LNPs rapidly escaped from early endosomes (EEs), avoided entering lysosomes, achieved mRNA simultaneously translated in ribosomes distributed in the cytoplasm and endoplasmic reticulum (ER), significantly improved the transfection efficiency of mRNA LNPs in DCs. Additionally, we applied cleavable PEG-lipids in mRNA vaccines for the first time and found this conducive to cellular uptake and DC targeting. In summary, SA-modified mRNA vaccines targeted DCs efficiently, and showed significantly higher EEs/lysosomal escape efficiency (90% vs 50%), superior tumor treatment effect, and lower side effects than commercially formulated mRNA vaccines.


Asunto(s)
Ácido N-Acetilneuramínico , Nanopartículas , ARN Mensajero/genética , Eficacia de las Vacunas , Vacunas de ARNm , Endosomas , Células Dendríticas
4.
ACS Appl Mater Interfaces ; 15(27): 32110-32120, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37384837

RESUMEN

In recent years, cationic liposomes have been successfully used as delivery platforms for mRNA vaccines. Poly(ethylene glycol) (PEG)-lipid derivatives are widely used to enhance the stability and reduce the toxicity of cationic liposomes. However, these derivatives are often immunogenic, triggering the rise of anti-PEG antibodies. Understanding the role and impact of PEG-lipid derivatives on PEGylated cationic liposomes is key to solving the PEG dilemma. In this study, we designed linear, branched, and cleavable-branched cationic liposomes modified with PEG-lipid derivatives and investigated the effect of the liposome-induced accelerated blood clearance (ABC) phenomenon on photothermal therapy. Our study indicated that the linear PEG-lipid derivatives mediated the effect of photothermal therapy by stimulating splenic marginal zone (MZ) B cells to secrete anti-PEG antibodies and increasing the level of IgM expression in the follicular region of the spleen. However, the cleavable-branched and branched PEG-lipid derivatives did not activate the complement system and avoided the ABC phenomenon by inducing noticeably lower levels of anti-PEG antibodies. The cleavable-branched PEGylated cationic liposomes improved the effect of photothermal therapy by reversing the charge on the liposome surface. This detailed study of PEG-lipid derivatives contributes to the further development and clinical application of PEGylated cationic liposomes.


Asunto(s)
Liposomas , Polímeros , Terapia Fototérmica , Inmunoglobulina M , Polietilenglicoles , Lípidos
5.
Biomater Sci ; 11(8): 2787-2808, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36825722

RESUMEN

The recent approvals for antibody-drug conjugates (ADCs) in multiple malignancies in the past few years have fueled the ongoing development of this class of drug. However, the limitation of ADCs is selectivity toward cancer cells especially overexpressing the antigen of interest. To broaden the anti-cancer spectrum of ADCs, combinatorial strategies of ADCs with chemotherapy have become a central focus of the current preclinical and clinical research. Here, we used the microtubule stabilizer paclitaxel and enfortumab vedotin-ejfv (EV), an ADC carrying the microtubule inhibitor payload monomethyl auristatin E (MMAE), for co-administration under the consideration of their mechanism of action associated with microtubules. We designed a sialic acid-cholesterol (SA-CH) conjugate-modified cationic liposome platform loaded with PTX (PTX-SAL) for efficiently targeting tumor-associated immune cells. Compared with monotherapy, PTX-SAL-mediated combination therapy with ADCs significantly inhibited S180 tumor growth in mice, with complete tumor regression occurring. The formation of a durable tumor-specific immunological memory response in mice that experienced complete tumor regression was assessed by secondary tumor cell rechallenge, and the production of memory T cells in the spleen was detected as related to the increased CD4+T memory cells and the enhanced serum IFN-γ. All our preliminary results throw light on the tremendous application potential for the application of this combination therapy regimen capable of mounting a durable immune response and stimulating a robust T cell-mediated tumor-specific immunological memory.


Asunto(s)
Inmunoconjugados , Paclitaxel , Ratones , Animales , Liposomas , Ácido N-Acetilneuramínico , Memoria Inmunológica , Línea Celular Tumoral
6.
Acta Pharm Sin B ; 13(1): 425-439, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36815045

RESUMEN

Immunoscenescence plays a key role in the initiation and development of tumors. Furthermore, immunoscenescence also impacts drug delivery and cancer therapeutic efficacy. To reduce the impact of immunosenescence on anti-tumor therapy, this experimental plan aimed to use neutrophils with tumor tropism properties to deliver sialic acid (SA)-modified liposomes into the tumor, kill tumor cells via SA-mediated photochemotherapy, enhance infiltration of neutrophils into the tumor, induce immunogenic death of tumor cells with chemotherapy, enhance infiltration of CD8+ T cells into the tumor-draining lymph nodes and tumors of immunosenescent mice, and achieve SA-mediated photochemotherapy. We found that CD8+ T cell and neutrophil levels in 16-month-old mice were significantly lower than those in 2- and 8-month-old mice; 16-month-old mice exhibited immunosenescence. The anti-tumor efficacy of SA-mediated non-photochemotherapy declined in 16-month-old mice, and tumors recurred after scabbing. SA-mediated photochemotherapy enhanced tumor infiltration by CD8+ T cells and neutrophils, induced crusting and regression of tumors in 8-month-old mice, inhibited metastasis and recurrence of tumors and eliminated the immunosenescence-induced decline in antitumor therapeutic efficacy in 16-month-old mice via the light-heat-chemical-immunity conversion.

7.
Eur J Pharm Biopharm ; 184: 50-61, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36682511

RESUMEN

Although anti-tumor strategies targeting tumor-associated immune cells were being rapidly developed, the preparations were usually limited in targeting efficiency. To overcome this barrier, this study reported a novel sialic acid-octadecylamine (SA-ODA) and monosialotetrahexosylganglioside (GM1) co-modified epirubicin liposomes (5-5-SAGL-EPI), which improved tumor-targeting ability through the active targeting of tumor-associated macrophages (TAMs) by SA-ODA and the long circulation of GM1. Thus, we evaluated 5-5-SAGL-EPI in vitro and in vivo. Analysis of cellular uptake by RAW264.7 cells using flow cytometry and confocal microscopy showed a higher rate of cellular uptake for 5-5-SAGL-EPI than for the common liposomes (CL-EPI). In pharmacokinetic studies using Wistar rats, compared to CL-EPI, 5-5-SAGL-EPI showed a higher circulation time in vivo. Tissue distribution studies in Kunming mice bearing S180 tumors revealed increased distribution of 5-5-SAGL-EPI in tumor tissues compared with liposomes modified with single ligands (SA-ODA [5-SAL-EPI] or GM1 [5-GL-EPI]). In vivo anti-tumor experiments using the S180 tumor-bearing mice revealed a high tumor inhibition rate and low toxicity for 5-5-SAGL-EPI. Moreover, freeze-dried 5-5-SAGL-EPI had good storage stability, and the anti-tumor effect was comparable to that before freeze-drying. Overall, 5-5-SAGL-EPI exhibited excellent anti-tumor effects before and after lyophilization.


Asunto(s)
Liposomas , Ácido N-Acetilneuramínico , Ratones , Ratas , Animales , Liposomas/farmacología , Ácido N-Acetilneuramínico/farmacología , Macrófagos Asociados a Tumores , Microambiente Tumoral , Gangliósido G(M1)/farmacología , Ratas Wistar , Línea Celular Tumoral
8.
AAPS PharmSciTech ; 23(8): 283, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253573

RESUMEN

Immunotherapy is a novel therapeutic approach for controlling and killing tumor cells by stimulating or reconstituting the immune system, among which T cells serve as immune targets. Herein, we used coenzyme Q10 (CoQ10), which has both immune activation and avoids adverse reactions, as a model drug and developed four CoQ10 submicron emulsions modified with sialic acid (SA) and/or monosialotetrahexosyl ganglioside (GM1). On the one hand, SA interacts with L-selectins on the surface of T cells after entering the circulatory system, leading to activation of T cells and enhancement of antitumor immune responses. On the other hand, owing to its immune camouflage, GM1 can prolong the circulation time of the preparation in the body, thereby increasing the accumulation of the drug at the tumor site. In vitro and in vivo experiments showed that SA-modified preparations exhibited stronger immune activation and inhibition of tumor proliferation. Pharmacokinetic experiments showed that GM1-modified preparations have longer circulation times in vivo. However, SA and GM1 co-modification did not produce a synergistic effect on the preparation. In conclusion, the SA-modified CoQ10 submicron emulsion (Q10-SE) showed optimal antitumor efficacy when administered at a medium dose (6 mg CoQ10 kg-1). In this study, the submicron emulsion model was used as a carrier, and the tumor-bearing mice were used as animal models. In addition, CoQ10 submicron emulsion was modified with SA-CH with active targeting function and/or GM1 with long-circulation function to explore the antitumor effects of different doses of CoQ10 submicron emulsion, and to screen the best tumor immunotherapy formulations of CoQ10.


Asunto(s)
Ácido N-Acetilneuramínico , Neoplasias , Animales , Emulsiones , Gangliósido G(M1) , Inmunoterapia , Ratones , Selectinas , Ubiquinona/análogos & derivados
9.
AAPS PharmSciTech ; 23(8): 285, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36258152

RESUMEN

Breast cancer metastasis is an important cause of death in patients with breast cancer and is closely related to circulating tumor cells (CTCs) and the metastatic microenvironment. As the most infiltrating immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs), which highly express sialic acid (SA) receptor (Siglec-1), are closely linked to tumor progression and metastasis. Furthermore, the surface of CTCs also highly expressed receptor (Selectin) for SA. A targeting ligand (SA-CH), composed of SA and cholesterol, was synthesized and modified on the surface of epirubicin (EPI)-loaded liposomes (EPI-SL) as an effective targeting delivery system. Liposomes were evaluated for characteristics, stability, in vitro release, cytotoxicity, cellular uptake, pharmacokinetics, tumor targeting, and pharmacodynamics. In vivo and in vitro experiments showed that EPI-SL enhanced EPI uptake by TAMs. In addition, cellular experiments showed that EPI-SL could also enhance the uptake of EPI by 4T1 cells, resulting in cytotoxicity second only to that of EPI solution. Pharmacodynamic experiments have shown that EPI-SL has optimal tumor inhibition with minimal toxicity, which can be ascribed to the fact that EPI-SL can deliver drugs to tumor based on TAMs and regulate TME through the depletion of TAMs. Our study demonstrated the significant potential of SA-modified liposomes in antitumor metastasis. Schematic diagram of the role of SA-CH modified EPI-loaded liposomes in the model of breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Liposomas , Humanos , Femenino , Epirrubicina/farmacocinética , Ácido N-Acetilneuramínico , Neoplasias de la Mama/tratamiento farmacológico , Macrófagos Asociados a Tumores , Lectina 1 Similar a Ig de Unión al Ácido Siálico , Ligandos , Línea Celular Tumoral , Inmunoterapia , Colesterol , Microambiente Tumoral , Melanoma Cutáneo Maligno
10.
Life Sci ; 310: 121081, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273630

RESUMEN

AIMS: Sialic acid derivatives (SA-derivatives) provide a nanomedicine platform for tumor-targeted delivery and treatment, and allow modulation of immunosuppressive tumor microenvironments with excellent therapeutic effects. Further, the multi-reactive groups of sialic acid (SA) contribute to the diversity of SA derivatives, which inevitably has implications for drug delivery systems and tumor therapy. However, relevant research remains lacking at present. Therefore, this study aimed to explore the effects of SA derivatives on SA-mediated drug delivery systems. MAIN METHODS: Four SA-derivatives with different linking bonds (ester and amide bonds), different linking groups (hydroxyl and carboxyl), and different linking objects (cholesterol, octadecanoic acid, and octadecylamine) were synthesized and the respective SA derivative-modified doxorubicin liposomes were prepared. In-depth research was conducted using both cells and animals. KEY FINDINGS: We found that an SA-cholesterol conjugate (SA-CH; linking bond, amide bond; linking group, carboxyl; linking object, cholesterol) could improve liposome stability, reduce liposome adsorption to plasma proteins, and enhance the targeting of liposomes for killing tumor-associated macrophages (TAMs). Reduced TAMs in the immunosuppressive tumor microenvironment lead to enhanced tumor infiltration of CD8+ T cells. SIGNIFICANCE: The results of this experiment provide clarity for research and development on SA-derivatives and a theoretical basis for clinical trials of SA-derivative-modified nanoparticles.


Asunto(s)
Liposomas , Neoplasias , Animales , Liposomas/química , Microambiente Tumoral , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/farmacología , Linfocitos T CD8-positivos/metabolismo , Neoplasias/tratamiento farmacológico , Colesterol/química , Amidas/farmacología , Línea Celular Tumoral
11.
Pharmaceutics ; 14(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35335921

RESUMEN

In preclinical studies of young mice, nanoparticles showed excellent anti-tumor therapeutic effects by harnessing Peripheral Blood Monocytes (PBMs) and evading the immune system. However, the changes of age will inevitably affect PBMs and the immune system, and there is a serious lack of relevant research. Sialic acid (SA)-octadecylamine (ODA) was synthesized, and SA- or polyethylene glycol (PEG)-modified epirubicin (EPI) liposomes (EPI-SL and EPI-PL, respectively) were prepared to explore differences in antitumor treatment using 8-month-old and 8-week-old Kunming mice. Based on presented data, 8-month-old mice had more PBMs in peripheral blood than 8-week-old mice, and age differences resulted in different anti-tumor treatment effects following EPI-SL and EPI-PL treatment. Following EPI-PL administration, the tumor volume was significantly smaller in 8-week-old mice than in 8-month-old mice (* p < 0.05). Eight-month-old mice treated with EPI-SL (8M-SL) presented no damage to healthy tissue, with a 100% survival rate, and 50% mice in 8M-SL showed 'shedding' of tumor tissues from the growth site. Accordingly, 8-month-old mice treated with EPI-SL achieved the best therapeutic effect at different ages and with different liposomes. EPI-SL could improve the antitumor effect of 8-week-old and 8-month-old mice.

12.
Acta Biomater ; 134: 702-715, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34339869

RESUMEN

Neutrophils and monocytes (N/Ms) are potential candidates for the delivery of therapeutic agents to the tumor microenvironment (TME) because of their tumor-accumulating nature. L-selectin and Siglec-1, receptors for sialic acid (SA), are highly expressed in circulating neutrophils and monocytes, respectively, in tumor-bearing mice, and N/Ms are recruited to tumors in response to inflammatory cytokines secreted by the TME, promoting tumor growth and invasion. Therefore, we constructed a drug delivery nano-platform using N/Ms as vehicles. SA-stearic acid conjugate was synthesized and utilized to modify epirubicin-loaded liposomes (EPI-SL) for enhanced endocytosis of liposomes by circulating N/Ms. Cellular uptake studies showed that SA modification improved the accumulation of EPI in N/Ms and did not alter the inherent chemotaxis of N/Ms. In tumor-bearing mice, EPI-SL significantly improved the tumor-targeting efficiency and therapeutic efficacy of EPI compared to other preparations and even eradicated tumors because of the tumor-accumulating and inhibitory effects of N/Ms containing EPI-SL. Our research showed, for the first time, that as an N/M-based drug delivery platform, EPI-SL remedied the limited tumor targeting in the conventional EPR effect-based treatment strategy, contributing to the exploitation of a new drug delivery platform for cancer treatment. STATEMENT OF SIGNIFICANCE: Tumor-associated neutrophils (TANs) and macrophages (TAMs) are closely associated with tumor growth and invasion, and therefore the development of therapeutic strategies targeting TANs and TAMs is crucial for tumor treatment. Given that most TANs and TAMs are derived from peripheral blood neutrophils and monocytes (N/Ms), respectively, we synthesized sialic acid-stearic acid conjugates that specifically bind N/Ms for the surface modification of liposomal epirubicin (EPI-SL). The N/Ms loaded with EPI-SL maintained their inherent chemotaxis toward the tumor. Additionally, EPI-SL significantly improved the survival of tumor-bearing mice and even eradicated tumors. These findings suggested that EPI-SL has substantial potential for clinical application by compensating for the previous low efficacy of ex vivo transformed cell infusion and improving the tumor-targeting efficiency.


Asunto(s)
Liposomas , Ácido N-Acetilneuramínico , Animales , Línea Celular Tumoral , Epirrubicina/farmacología , Ratones , Monocitos , Neutrófilos
13.
Int J Pharm ; 602: 120552, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798685

RESUMEN

Combined administration of drugs can improve efficacy and reduce toxicity; therefore, this combination approach has become a routine method in cancer therapy. The main combination regimens are sequential, mixed (also termed "cocktail"), and co-loaded; however, other combinations, such as administration of synergistic drugs and the use of formulations with different mechanisms of action, may exert better therapeutic effects. Tumor-associated macrophages (TAMs) play functional roles throughout tumor progression and exhibit characteristic phenotypic plasticity. Sialic acid (SA)-modified epirubicin liposomes (S-E-L) and SA-modified zoledronate liposomes (S-Z-L) administered separately kill TAMs, reverse their phenotype, and achieve antitumor effects. In this study, we examined the effects of a two-treatment combination for drug delivery, using sequential, mixed, and co-loaded drug delivery. We found that therapeutic effects differed between administration methods: mixed administration of S-E-L and S-Z-L, co-loaded administration of SA-modified liposomes (S-ZE-C), and sequential administration of S-E-L injected 24 h after S-Z-L did not inhibit tumor growth; however, sequential administration of S-Z-L injected 24 h after S-E-L resulted in no tumor growth, no toxicity to noncancerous tissue, and no death of mice, and exhibited 25% tumor shedding. Thus, our results thus encourage the further development of combined therapies for nanomedicines based on the mechanisms investigated here.


Asunto(s)
Liposomas , Ácido N-Acetilneuramínico , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Epirrubicina , Ratones , Ácido Zoledrónico
14.
Int J Pharm ; 590: 119929, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33010395

RESUMEN

Immune checkpoint inhibitors (ICIs), like monoclonal antibodies of PD-1, CTLA-4, and their ligands, are effective only in some populations of patients with cancer, because the immunosuppressive state of the tumor microenvironment (TME) in some patients cannot be effectively reversed after ICI therapy. Sialic acid (SA) receptors in the Siglec family are highly expressed on the surface of tumor-associated macrophages (TAMs) and most have immunosuppressive effects. Therefore, targeting TAMs (the siglec axis) to reverse tumor immunosuppression may provide a new direction for the development of novel tumor immunotherapies. We designed a Zoledronic acid (ZA)-loaded liposome modified by a SA-octadecylamine conjugate (ZA-SL) to act as a novel nanomedicine delivery platform. This platform can efficiently deliver ZA to TAMs through the combination of SA and Siglec-1 and exerts specific cytotoxicity or phenotypic remodeling of M2-like TAMs depending on the drug concentration in TAMs. In vivo experiments showed that ZA-SL had good TAM targeting ability, and after treatment, the S180 tumors of mice were significantly inhibited, and the proportion of M1-like TAMs was significantly higher than that of M2-like TAMs with no significant adverse reactions in mice. Therefore, SA-modified ZA-loaded liposomes may provide a promising strategy for cancer immunotherapy.


Asunto(s)
Ácido N-Acetilneuramínico , Neoplasias , Animales , Línea Celular Tumoral , Humanos , Inmunoterapia , Macrófagos , Ratones , Neoplasias/tratamiento farmacológico , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Microambiente Tumoral , Macrófagos Asociados a Tumores , Ácido Zoledrónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...