Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Zool Res ; 45(4): 781-790, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38894521

RESUMEN

Precise targeting of specific regions within the central nervous system (CNS) is crucial for both scientific research and gene therapy in the context of brain diseases. Adeno-associated virus 13 (AAV13) is known for its restricted diffusion range within the CNS, making it an ideal choice for precise labeling and administration within small brain regions. However, AAV13 mediates relatively low expression of target genes. Here, we introduced specifically engineered modifications to the AAV13 capsid protein to enhance its transduction efficiency. We first constructed AAV13-YF by mutating tyrosine to phenylalanine on the surface of the AAV13 capsid. We then inserted the 7m8 peptide, known to enhance cell transduction, into positions 587/588 and 585/586 of the AAV13 capsid, resulting in two distinct variants named AAV13-587-7m8 and AAV13-585-7m8, respectively. We found that AAV13-YF exhibited superior in vitro infectivity in HEK293T cells compared to AAV13, while AAV13-587-7m8 and AAV13-585-7m8 showed enhanced CNS infection capabilities in C57BL/6 mice, with AAV13-587-7m8 infection retaining a limited spread range. These modified AAV13 variants hold promising potential for applications in gene therapy and neuroscience research.


Asunto(s)
Dependovirus , Ratones Endogámicos C57BL , Dependovirus/genética , Animales , Humanos , Ratones , Células HEK293 , Transducción Genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo
3.
Mol Neurobiol ; 61(2): 883-899, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37668962

RESUMEN

OBJECTIVE: Prolonged sleep deprivation is known to have detrimental effects on the hippocampus during development or in adulthood. Furthermore, it is well-established that sleep deprivation disrupts energy metabolism broadly. SIRT6 is a critical regulator of energy metabolism in both central and peripheral tissues. This study aims to investigate the role of SIRT6 in modulating hippocampal neurogenesis following sleep deprivation during development, and elucidate the underlying mechanism. METHODS: Male Sprague-Dawley rats, aged three weeks, were subjected to 2 weeks of sleep deprivation using the modified multiple platform method. Metabolomic profiling was carried out using the liquid chromatography-electrospray ionization-tandem mass spectrometry (LC‒ESI‒MS/MS). To investigate the role of SIRT6 in energy metabolism, the rats were administered with either the SIRT6-specific inhibitor, OSS128167, or SIRT6-overexpressing adeno-associated virus (AAV). Hippocampal neurogenesis was assessed by immunostaining with markers for neural stem cells (SOX2), immature neurons [doublecortin (DCX)] and newborn cells (BrdU). Sparse labeling of adult neurons was used to determine the density of dendritic spines in the dentate gyrus (DG). The Y-maze and novel object recognition (NOR) tests were performed to evaluate the spatial and recognition memory. SIRT6 expression was examined using immunofluorescence and western blotting (WB). The inhibition of SIRT6 was confirmed by assessing the acetylation of histone 3 lysine 9 (aceH3K9), a well-known substrate of SIRT6, through WB. RESULTS: Sleep deprivation for a period of two weeks leads to inhibited hippocampal neurogenesis, reduced density of dendritic spines in the DG, and impaired memory, accompanied by decreased SIRT6 expression and disrupted energy metabolism. Similar to sleep deprivation, administration of OSS128167 significantly decreased energy metabolism, leading to reduced neurogenesis and memory dysfunction. Notably, the abnormal hippocampal energy metabolism, neurogenetic pathological changes and memory dysfunction caused by sleep deprivation were alleviated by SIRT6 overexpression in the DG. CONCLUSION: Our results suggest that SIRT6 plays a critical role in maintaining energy metabolism homeostasis in the hippocampus after sleep deprivation, promoting hippocampal neurogenesis and enhancing memory during development.


Asunto(s)
Sirtuinas , Privación de Sueño , Animales , Masculino , Ratas , Giro Dentado/metabolismo , Metabolismo Energético , Hipocampo/metabolismo , Neurogénesis , Ratas Sprague-Dawley , Sirtuinas/metabolismo , Privación de Sueño/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA