Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 119(1): 540-556, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38662911

RESUMEN

Carotenoids are photosynthetic pigments and antioxidants that contribute to different plant colors. However, the involvement of TOPLESS (TPL/TPR)-mediated histone deacetylation in the modulation of carotenoid biosynthesis through ethylene-responsive element-binding factor-associated amphiphilic repression (EAR)-containing transcription factors (TFs) in apple (Malus domestica Borkh.) is poorly understood. MdMYB44 is a transcriptional repressor that contains an EAR repression motif. In the present study, we used functional analyses and molecular assays to elucidate the molecular mechanisms through which MdMYB44-MdTPR1-mediated histone deacetylation influences carotenoid biosynthesis in apples. We identified two carotenoid biosynthetic genes, MdCCD4 and MdCYP97A3, that were confirmed to be involved in MdMYB44-mediated carotenoid biosynthesis. MdMYB44 enhanced ß-branch carotenoid biosynthesis by repressing MdCCD4 expression, whereas MdMYB44 suppressed lutein level by repressing MdCYP97A3 expression. Moreover, MdMYB44 partially influences carotenoid biosynthesis by interacting with the co-repressor TPR1 through the EAR motif to inhibit MdCCD4 and MdCYP97A3 expression via histone deacetylation. Our findings indicate that the MdTPR1-MdMYB44 repressive cascade regulates carotenoid biosynthesis, providing profound insights into the molecular basis of histone deacetylation-mediated carotenoid biosynthesis in plants. These results also provide evidence that the EAR-harboring TF/TPL repressive complex plays a universal role in histone deacetylation-mediated inhibition of gene expression in various plants.


Asunto(s)
Carotenoides , Regulación de la Expresión Génica de las Plantas , Histonas , Malus , Proteínas de Plantas , Factores de Transcripción , Carotenoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malus/genética , Malus/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Acetilación , Plantas Modificadas Genéticamente
2.
Plant Biotechnol J ; 18(8): 1736-1748, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31930634

RESUMEN

Methylation at the MdMYB1 promoter in apple sports has been reported as a regulator of the anthocyanin pathway, but little is known about how the locus is recognized by the methylation machinery to regulate anthocyanin accumulation. In this study, we analysed three differently coloured 'Fuji' apples and found that differences in the transcript levels of MdMYB1, which encodes a key regulator of anthocyanin biosynthesis, control the anthocyanin content (and therefore colour) in fruit skin. The CHH methylation levels in the MR3 region (-1246 to -780) of the MdMYB1 promoter were found to be negatively correlated with MdMYB1 expression. Thus, they were ideal materials to study DNA methylation in apple sports. The protein of RNA-directed DNA methylation (RdDM) pathway responsible for CHH methylation, MdAGO4, was found to interact with the MdMYB1 promoter. MdAGO4s can interact with MdRDM1 and MdDRM2s to form an effector complex, fulfilling CHH methylation. When MdAGO4s and MdDRM2s were overexpressed in apple calli and Arabidopsis mutants, those proteins increase the CHH methylation of AGO4-binding sites. In electrophoretic mobility shift assays, MdAGO4s were found to specifically bind to sequence containing ATATCAGA. Knockdown of MdNRPE1 did not affect the binding of MdAGO4s to the c3 region of the MdMYB1 promoter in 35S::AGO4 calli. Taken together, our data show that the MdMYB1 locus is methylated through binding of MdAGO4s to the MdMYB1 promoter to regulate anthocyanin biosynthesis by the RdDM pathway.


Asunto(s)
Malus , Antocianinas/metabolismo , Metilación de ADN/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...