Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 5(2): 103033, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38652663

RESUMEN

Passive thermal management with zero-energy consumption and high compactness has drawn increasing attention. Here, we present a protocol to develop a hygroscopic salt-loaded heat sink with a moisture-permeable membrane encapsulation technique for electronics cooling. We describe steps for preparing lithium bromide solution and heat sink with anti-corrosion graphene coating. We then detail procedures for preparing the hygroscopic salt-loaded membrane-encapsulated heat sinks (HSMHSs). The produced low-cost HSMHS exhibits remarkably high thermal management performance without the risks of leakage and corrosion. For complete details on the use and execution of this protocol, please refer to Sui et al.1.

2.
ACS Appl Mater Interfaces ; 15(30): 36107-36116, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37477364

RESUMEN

We present a novel power-to-water (P2W) battery that can store electricity as thermal energy and discharge it as a heat source for hygroscopic solution desorption. The battery can work in two scenarios: atmospheric water harvesting (AWH) and dehumidification. The involvement of high-grade energy and sophisticated design enables better sorption kinetics and storage density. A proof-of-concept prototype verified the feasibility and achieved a record-breaking water production rate of more than 10.2 g (Ldevice h)-1. Also, the battery can achieve a round-trip efficiency of 90% for AWH and 68% for dehumidification in large-scale storage. The inexpensive storage medium contributes to a very low cost per energy (∼20 $ kWh-1) which means that P2W batteries excel in short- and long-duration storage. The long-term transient performance studies demonstrate impressive competitiveness over the traditional AWH and vapor-compression dehumidification systems. P2W provides new directions for the development of versatile, scalable, repeatable, and sustainable energy storage systems.

3.
Sci Total Environ ; 658: 219-233, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30577018

RESUMEN

Three-dimensional macroporous graphene-wrapped zero-valent copper nanoparticles (3D-GN@Cu0) were synthesized using a self-assembly process of liquid-phase reduction and characterized by field emission scanning electron microscopy, nitrogen adsorption/desorption isotherms, X-ray diffraction, Raman spectrum analysis, and X-ray photoelectron spectroscopy. The catalytic activity of 3D-GN@Cu0 was evaluated in view of the effects of various systems, the pH value, catalyst dosage, initial metronidazole concentration and temperature, and it showed a high efficiency for removing metronidazole with saturated dissolved oxygen (without adding extra H2O2) in a wide range of pH value from 3.2 to 9.8. Combined with the results of dissolved oxygen activation, determination of reactive oxidizing species, and X-ray photoelectron spectroscopy (XPS) analysis, the surface-bounded ·OHads formed by the reaction of the in situ generation H2O2 with 3D-GN@Cu0 was mainly responsible for the removal of metronidazole. The charge distribution and electrostatic potential (ESP) of 3D-GN@Cu0 further illustrated the distribution and transfer of electrons on the catalyst surface, which predicted a micro-electrolysis-promoted Fenton-like reaction mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...