Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1210, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012412

RESUMEN

Photosynthetic organisms adapt to changing light conditions by manipulating their light harvesting complexes. Biophysical, biochemical, physiological and genetic aspects of these processes are studied extensively. The structural basis for these studies is lacking. In this study we address this gap in knowledge by focusing on phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. In this study we focus on the phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. Specifically, we examine red algae (Porphyridium purpureum) grown under a low light intensity (LL) and a medium light intensity (ML). Using cryo-electron microscopy, we resolve the structure of ML-PBS and compare it to the LL-PBS structure. The ML-PBS is 13.6 MDa, while the LL-PBS is larger (14.7 MDa). The LL-PBS structure have a higher number of closely coupled chromophore pairs, potentially the source of the red shifted fluorescence emission from LL-PBS. Interestingly, these differences do not significantly affect fluorescence kinetics parameters. This indicates that PBS systems can maintain similar fluorescence quantum yields despite an increase in LL-PBS chromophore numbers. These findings provide a structural basis to the processes by which photosynthetic organisms adapt to changing light conditions.


Asunto(s)
Porphyridium , Rhodophyta , Ficobilisomas/química , Microscopía por Crioelectrón , Aclimatación
2.
Structure ; 30(4): 534-536, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35395194

RESUMEN

Attachment of bilins to phycobiliproteins is performed by dedicated lyases. In this issue of Structure, Kumarapperuma et al., 2022 present the structure of an E/F type lyase-isomerase that identifies the correct biological interface between active domains, suggesting that a previous E/F lyase misidentified the heterodimer structure from the crystal lattice.


Asunto(s)
Liasas , Pigmentos Biliares , Liasas/química , Ficobiliproteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...