Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Faraday Discuss ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38807494

RESUMEN

Sulfur atoms serve as key players in diverse chemical processes, from astrochemistry at very low temperature to combustion at high temperature. Building upon our prior findings, showing cyclization to thiophenes following the reaction of ground-state sulfur atoms with dienes, we here extend this investigation to include many additional reaction products, guided by detailed theoretical predictions. The outcomes highlight the complex formation of products during intersystem crossing (ISC) to the singlet surfaces. Here, we employed crossed-beam velocity map imaging and high-level ab initio methods to explore the reaction of S(3P) with 1,3-butadiene and isoprene under single-collision conditions and in low-temperature flows. For the butadiene reaction, our experimental results show the formation of thiophene via H2 loss, a 2H-thiophenyl radical through H loss, and thioketene through ethene loss at a slightly higher collision energy compared to previous observations. Complementary Chirped-Pulse Fourier-Transform mmWave spectroscopy (CP-FTmmW) measurements in a uniform flow confirmed the formation of thioketene in the reaction at 20 K. For the isoprene reaction, we observed analogous products along with the 2H-thiophenyl radical arising from methyl loss and C3H4S (loss of ethene or H2 + acetylene). CP-FTmmW detected the formation of thioformaldehyde via loss of 1,3-butadiene, again in the 20 K flow. Coupled-cluster calculations on the pathways found by the automated kinetic workflow code KinBot support these findings and indicate ISC to the singlet surface, leading to the generation of various long-lived intermediates, including 5-membered heterocycles.

2.
J Chem Phys ; 159(21)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38054511

RESUMEN

Chirped-Pulse Fourier-Transform millimeter wave (CP-FTmmW) spectroscopy is a powerful method that enables detection of quantum state specific reactants and products in mixtures. We have successfully coupled this technique with a pulsed uniform Laval flow system to study photodissociation and reactions at low temperature, which we refer to as CPUF ("Chirped-Pulse/Uniform flow"). Detection by CPUF requires monitoring the free induction decay (FID) of the rotational coherence. However, the high collision frequency in high-density uniform supersonic flows can interfere with the FID and attenuate the signal. One way to overcome this is to sample the flow, but this can cause interference from shocks in the sampling region. This led us to develop an extended Laval nozzle that creates a uniform flow within the nozzle itself, after which the gas undergoes a shock-free secondary expansion to cold, low pressure conditions ideal for CP-FTmmW detection. Impact pressure measurements, commonly used to characterize Laval flows, cannot be used to monitor the flow within the nozzle. Therefore, we implemented a REMPI (resonance-enhanced multiphoton ionization) detection scheme that allows the interrogation of the conditions of the flow directly inside the extended nozzle, confirming the fluid dynamics simulations of the flow environment. We describe the development of the new 20 K extended flow, along with its characterization using REMPI and computational fluid dynamics. Finally, we demonstrate its application to the first low temperature measurement of the reaction kinetics of HCO with O2 and obtain a rate coefficient at 20 K of 6.66 ± 0.47 × 10-11 cm3 molec-1 s-1.

5.
J Phys Chem Lett ; 14(34): 7611-7617, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37594479

RESUMEN

We combine crossed-beam velocity map imaging with high-level ab initio/transition state theory modeling of the reaction of S(3P) with 1,3-butadiene and isoprene under single collision conditions. For the butadiene reaction, we detect both H and H2 loss from the initial adduct, and from reaction with isoprene, we see both H loss and methyl loss. Theoretical calculations confirm these arise following intersystem crossing to the singlet surface forming long-lived intermediates. For the butadiene reaction, these lose H2 to form thiophene as the dominant channel, H to form the detected 2H-thiophenyl radical, or ethene, giving thioketene. For isoprene, additional reaction products are suggested by theory, including the observed H and methyl loss radicals, but also methyl thiophene, thioformaldehyde, and thioketene. The results for S(3P) + 1,3-butadiene, showing direct cyclization to the aromatic product and yielding few bimolecular product channels, are in striking contrast to those for the analogous O(3P) reaction.

6.
Phys Chem Chem Phys ; 25(34): 22595-22606, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37602475

RESUMEN

In this Perspective, we review our recent work on rotationally inelastic collisions of highly vibrationally excited NO molecules prepared in single rotational and parity levels at v = 10 using stimulated emission pumping (SEP). This state preparation is employed in a recently developed crossed molecular beam apparatus where two nearly copropagating molecular beams achieve an intersection angle of 4° at the interaction region. This near-copropagating beam geometry of the molecular beams permits very wide tuning of the collision energy, from far above room temperature down to 2 K where we test the theoretical treatment of the attractive part of the potentials and the difference potential for the first time. We have obtained differential cross sections for state-to-state collisions of NO (v = 10) with Ar and Ne in both spin-orbit manifolds using velocity map imaging. Overall good agreement of the experimental results was seen with quantum mechanical close-coupling calculations done on both coupled-cluster and multi-reference configuration interaction potential energy surfaces. Probing cold collisions of NO carrying ∼2 eV of vibrational excitation allows us to test state-of-the-art theory in this extreme nonequilibrium regime.

7.
Phys Chem Chem Phys ; 25(27): 17828-17839, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37377093

RESUMEN

State-to-state rotational energy transfer in collisions of ground ro-vibrational state 13CO molecules with N2 molecules has been studied using the crossed molecular beam method under kinematically equivalent conditions used for 13CO + CO rotationally inelastic scattering described in a previously published report (Sun et al., Science, 2020, 369, 307-309). The collisionally excited 13CO molecule products are detected by the same (1 + 1' + 1'') VUV (Vacuum Ultra-Violet) resonance enhanced multiphoton ionization scheme coupled with velocity map ion imaging. We present differential cross sections and scattering angle resolved rotational angular momentum alignment moments extracted from experimentally measured 13CO + N2 scattering images and compare them with theoretical predictions from quasi-classical trajectories (QCT) on a newly calculated 13CO-N2 potential energy surface (PES). Good agreement between experiment and theory is found, which confirms the accuracy of the 13CO-N2 potential energy surface for the 1460 cm-1 collision energy studied by experiment. Experimental results for 13CO + N2 are compared with those for 13CO + CO collisions. The angle-resolved product rotational angular momentum alignment moments for the two scattering systems are very similar, which indicates that the collision induced alignment dynamics observed for both systems are dominated by a hard-shell nature. However, compared to the 13CO + CO measurements, the primary rainbow maximum in the DCSs for 13CO + N2 is peaked consistently at more backward scattering angles and the secondary maximum becomes much less obvious, implying that the 13CO-N2 PES is less anisotropic. In addition, a forward scattering component with high rotational excitation seen for 13CO + CO does not appear for 13CO-N2 in the experiment and is not predicted by QCT theory. Some of these differences in collision dynamics behaviour can be predicted by a comparison between the properties of the PESs for the two systems. More specific behaviour is also predicted from analysis of the dependence on the relative collision geometry of 13CO + N2 trajectories compared to 13CO + CO trajectories, which shows the special 'do-si-do' pathway invoked for 13CO + CO is not effective for 13CO + N2 collisions.

8.
Faraday Discuss ; 245(0): 245-260, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37317673

RESUMEN

We present an experimental and theoretical investigation of the reaction of vibrationally excited CN (v = 1) with isomers of butadiene at low temperature. The experiments were conducted using the newly built apparatus, UF-CRDS, which couples near-infrared cw-cavity ring-down spectroscopy with a pulsed Laval flow. The well-matched hydrodynamic time and long ring-down time decays allow measurement of the kinetics of the reactions within a single trace of a ring-down decay, termed Simultaneous Kinetics and Ring-down (SKaR). The pulsed experiments were carried out using a Laval nozzle designed for the 70 K uniform flow with nitrogen as the carrier gas. The measured bimolecular rates for the reactions of CN (v = 1) with 1,3-butadiene and 1,2-butadiene are (3.96 ± 0.28) × 10-10 and (3.06 ± 0.35) × 10-10 cm3 per molecule per s, respectively. The reaction rate measured for CN (v = 1) with the 1,3-butadiene isomer is in good agreement with the rate previously reported for the reaction with ground state CN (v = 0) under similar conditions. We report the rate of the reaction of CN (v = 1) with the 1,2-butadiene isomer here for the first time. The experimental results were interpreted with the aid of variable reaction-coordinate transition-state theory calculations to determine rates and branching of the addition channels based on a high-level multireference treatment of the potential energy surface. H-abstraction reaction rates were also theoretically determined. For the 1,2-butadiene system, theoretical estimates are then combined with literature values for the energy-dependent product yields from the initial adducts to predict overall temperature-dependent product branching. H loss giving 2-cyano-1,3-butadiene + H is the main product channel, exclusive of abstraction, at all energies, but methyl loss forming 1-cyano-prop-3-yne is 15% at low temperature growing to 35% at 500 K. Abstraction forming HCN and various radicals is important at 500 K and above. The astrochemical implications of these results are discussed.

9.
J Phys Chem A ; 127(24): 5202-5208, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37303110

RESUMEN

We present a crossed-beam imaging study of the reactions of OH radicals with 1- and 2-propanol at a collision energy of 8 kcal mol-1 using 157 nm probe of the radical product. Our detection is selective for the α-H and ß-H abstraction in the 1-propanol case and for the α-H abstraction only in the 2-propanol case. The results show direct dynamics. A sharply peaked backscattered angular distribution is seen for the 2-propanol system and broader backward-sideways scattering for 1-propanol consistent with the different abstraction sites. The translational energy distributions peak at ∼35% of the collision energy, far from the heavy-light-heavy kinematic propensity. As this is ∼10% of the available energy, substantial vibrational excitation in the water product is inferred. The results are discussed in relation to analogous OH + butane and O(3P) + propanol reactions.

10.
J Phys Chem A ; 127(9): 2068-2070, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36891677
13.
J Phys Chem A ; 126(34): 5768-5775, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993843

RESUMEN

The photodissociation dynamics of astrophysically relevant propyl derivatives (C3H7X; X = CN, OH, HCO) at 157 nm exploiting an ultracompact velocity map imaging (UVMIS) setup has been reported. The successful operation of UVMIS allowed the exploration of the 157 nm photodissociation of six (iso)propyl systems─n/i-propyl cyanide (C3H7CN), n/i-propyl alcohol (C3H7OH), and (iso)butanal (C3H7CHO)─to explore the C3H7 loss channel. The distinct center-of-mass translational energy distributions for the i-C3H7X (X= CN, OH, HCO) could be explained through preferential excitation of the low frequency C-H bending modes of the formyl moiety compared to the higher frequency stretching of the cyano and hydroxy moieties. Although the ionization energy of the n-C3H7 radical exceeds the energy of a 157 nm photon, C3H7+ was observed in the n-C3H7X (X = CN, OH, HCO) systems as a result of photoionization of vibrationally "hot" n-C3H7 fragments, photoionization of i-C3H7 after a hydrogen shift in vibrationally "hot" n-C3H7 radicals, and/or two-photon ionization. Our experiments reveal that at least the isopropyl radical (i-C3H7) and possibly the normal propyl radical (n-C3H7) should be present in the interstellar medium and hence searched for by radio telescopes.

14.
J Phys Chem A ; 126(32): 5354-5362, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35938878

RESUMEN

Chirped-pulse rotational spectroscopy in a quasi-uniform flow has been used to investigate the reaction dynamics of a multichannel radical-radical reaction of relevance to planetary atmospheres and combustion. In this work, the NO + propargyl (C3H3) reaction was found to yield six product channels containing eight detected species. These products and their branching fractions (%), are as follows: HCN (50), HCNO (18), CH2CN (12), CH3CN (7.4), HC3N (6.2), HNC (2.3), CH2CO (1.3), HCO (1.8). The results are discussed in light of previous unimolecular photodissociation studies of isoxazole and prior potential energy surface calculations of the NO + C3H3 system. The results also show that the product branching is strongly influenced by the excess energy of the reactant radicals. The implications of the title reaction to the planetary atmospheres, particularly to Titan, are discussed.

15.
Faraday Discuss ; 238(0): 249-265, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-35792611

RESUMEN

The unimolecular dissociation of formaldehyde is studied via excitation to the à band at several excitation energies from just below the ground state radical dissociation threshold to 5000 cm-1 above it. CO product rotational distributions, photofragment excitation spectroscopy and state-correlated slice imaging results are combined with quasi-classical trajectory calculations to reveal manifestations of quantum effects in this complex dissociation process involving interactions among radical, molecular, and roaming pathways. Evidence of nodal structure at the tight transition state to molecular products is investigated and correlations between the CO rotational and H2 vibrational distributions are used to suggest the transition state modes that are responsible. A large modulation of the roaming yield previously identified and associated with roaming resonances at the onset of the H + HCO(v1,v2,v3 = 0,0,0) product channel suggests a similar origin for enhanced roaming and a roaming yield that is strongly dependent on parent rotation on the 2641 band just 15 cm-1 above the H + HCO(0,2,1) threshold. Similar resonances are predicted on other bands that share near coincident energies with HCO product vibrational thresholds.

16.
J Phys Chem A ; 126(21): 3338-3346, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35605132

RESUMEN

Inelastic scattering processes have proven a powerful means of investigating molecular interactions, and much current effort is focused on the cold and ultracold regime where quantum phenomena are clearly manifested. Studies of collisions of the open shell nitric oxide (NO) molecule have been central in this effort since the pioneering work of Houston and co-workers in the early 1990s. State-to-state scattering of vibrationally excited molecules in the cold regime introduces challenges that test the suitability of current theoretical methods for ab initio determination of intermolecular potentials, and concomitant electronically nonadiabatic processes raise the bar further. Here we report measurements of differential cross sections for state-to-state spin-orbit changing collisions of NO (v = 10, Ω″ = 1.5, and j″ = 1.5) with neon from 2.3 to 3.5 cm-1 collision energy using our recently developed near-copropagating beam technique. The experimental results are compared with those obtained from quantum scattering calculations on a high-level set of coupled cluster potential energy surfaces and are shown to be in good agreement. The theoretical results suggest that distinct backscattering in the 2.3 cm-1 case arises from overlapping resonances.

17.
J Chem Phys ; 156(1): 014202, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34998338

RESUMEN

Chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy is a powerful near-universal detection method finding application in many areas. We have previously coupled it with supersonic flows (CPUF) to obtain product branching in reaction and photodissociation. Because chirped-pulse microwave detection requires monitoring the free induction decay on the timescale of microseconds, it cannot be employed with good sensitivity at the high densities achieved in some uniform supersonic flows. For application to low-temperature kinetics studies, a truly uniform flow is required to obtain reliable rate measurements and enjoy all the advantages that CP-FTMW has to offer. To this end, we present a new setup that combines sampling of uniform supersonic flows using an airfoil-shaped sampling device with chirped-pulse mmW detection. Density and temperature variations in the airfoil-sampled uniform flow were revealed using time-dependent rotational spectroscopy of pyridine and vinyl cyanide photoproducts, highlighting the use of UV photodissociation as a sensitive diagnostic tool for uniform flows. The performance of the new airfoil-equipped CPUF rotational spectrometer was validated using kinetics measurements of the CN + C2H6 reaction at 50 K with detection of the HCN product. Issues relating to product detection by rotational spectroscopy and airfoil sampling are discussed. We show that airfoil sampling enables direct measurements of low temperature reaction kinetics on a microsecond timescale, while rotational spectroscopic detection enables highly specific simultaneous detection of reactants and products.

18.
J Phys Chem Lett ; 13(1): 91-97, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-34958581

RESUMEN

We apply chirped-pulse uniform flow millimeterwave (CPUF-mmW) spectroscopy to study the complex multichannel reaction dynamics in the reaction between the propargyl and amino radicals (C3H3 + NH2/ND2), a radical-radical reaction of importance in the gas-phase chemistry of astrochemical environments and combustion systems. The photolytically generated radicals are allowed to react in a well-characterized quasi-uniform supersonic flow, and mmW rotational spectroscopy (70-93 GHz) is used for simultaneous detection of the reaction products: HCN, HNC, HC3N, DCN, DNC, and DC3N, while spectral intensities of the measured pure-rotational lines allow product branching to be quantified. High-level electronic structure calculations were used for theoretical prediction of the reaction pathways and branching. Experimentally deduced product branching fractions were compared with the results from statistical simulations based on the RRKM theory. Product branching was found to be strongly dependent on the excess internal energy of the C3H3 and NH2/ND2 reactants.

19.
Science ; 374(6571): 1122-1127, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34822294

RESUMEN

The roaming chemical reaction mechanism involves near-dissociation of an energized molecule to radicals that leads instead to intramolecular reaction after reorientation at long range. Surprisingly, no clear quantum signatures of roaming have been observed to date, despite the quantum nature of the roaming event. We found evidence of quantum dynamics in the photodissociation of formaldehyde near the roaming threshold. This is ascribed to resonances associated to H+HCO(Ka = 1) that have a profound impact on the CO rotational and translational energy distributions and cause the roaming fraction to vary by a factor of 2 over an energy range of 10 cm­1. The roaming pathway serves both to modulate and report on the complex vibrational dynamics and coupling among the three dissociation pathways in the excited molecule as it decays to products.

20.
J Phys Chem A ; 125(25): 5481-5489, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34138560

RESUMEN

The Coulomb explosion dynamics following strong field ionization of chlorocarbonylsulfenyl chloride was studied using multimass coincidence detection and covariance imaging analysis, supported by density functional theory calculations. These results show evidence of multiple dissociation channels from various charge states. Double ionization to low-lying electronic states leads to a dominant C-S cleavage channel, while higher states can alternatively correlate to the loss of Cl+. Triple ionization leads to a double dissociation channel, the observation of which is confirmed via three-body covariance analysis, while further ionization leads primarily to atomic or diatomic fragments whose relative momenta depend strongly on the starting structure of the molecule.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...