Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 11: 1177173, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37273510

RESUMEN

pH adjustment was considered a simple step in the hydrometallurgy process, but its complicated operation was ignored in the past. In some industrial applications, the leachate pH was slowly adjusted by a diluted alkaline solution, with the defects of doubling the leachate volume and causing droplet hydrolysis/coagulation. Up to date, promising routes have been developed for rapid pH adjustment, especially in sealed high-temperature/pressure vessels. New routes emerged in some redox/decomposition reactions of nitrate/urea and organics. Such reactions did not start and/or were slow at room temperature but started spontaneously at high temperatures to generate/consume free H+. This induced pH adjustment in a rapid and homogeneous way.

3.
J Environ Manage ; 329: 117101, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36566727

RESUMEN

Electroplating sludge was a hazardous waste comprised of heavy metals and other Fe/Al/Ca/Si impurities, and produced massively in surface treatment industry. In the past, it was commonly purified via hydrometallurgy, chlorination and reduction calcination routes, but also blended as additive in rotary kiln, to stabilize the heavy metals in geopolymer. Herein, an alternative strategy was developed to treat a real electroplating sludge for recycling magnetic Zn-rich spinel and stabilizing Zn in calcium metasilicate glass via a facile pyrometallurgy route with the blending of emulsion mud and coal ash. The sludge contained 35.6% Zn and 0.54% Cr and then was blended with 50% emulsion mud. After calcination at 1200 °C, the product was highly dispersed, whilst octahedral ZnAlFeO4 spinel with Zn content of 40.0% were formed and separated by using magnet, in accordance with the recycling efficiency of 51.2% Zn from the electroplating sludge. But after calcination at 1400 °C, the gypsum in emulsion mud was decomposed as CaO and accelerated the dissolution of Si-bearing substance as calcium metasilicate glass for covering ZnAlFeO4 spinel, resulting in the Zn leaching of 1568 mg/L. By adding 50% Si-rich coal ash in the calcination system, more calcium metasilicate glass were generated, and then the Zn concentration in the toxic leaching test was only 12.09 mg/L. During the calcination, Cr showed similar performance to Al/Fe and involved in the spinel formation. This provided a new route to recycle Zn from Zn-rich electroplating sludge and to solidify heavy metals via calcium metasilicate glass route.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Aguas del Alcantarillado/análisis , Ceniza del Carbón , Calcio , Galvanoplastia , Emulsiones
4.
Environ Res ; 216(Pt 1): 114462, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36191617

RESUMEN

Fe/S-bearing erdite flocculant has been proven to be effective in the precipitation of heavy metals from real electroplating wastewater, with the only drawback being the huge production of sludge. This sludge was rich in Fe/S/Zn/Cu/Ni and refractory to be recycled due to the extractant pollution by free Fe and the dissolution of sulphide. Herein, a multistep separation method was developed to dissolve sulphide and separate Fe prior to Zn/Cu/Ni. Results showed that more than 92% sludge was dissolved as Fe/Zn/Cu/Ni-rich leachate after the sludge was leached by nitric acid, with the rest of the remaining undissolved elemental sulphurs. When the leachate was directly extracted by using commercially extractant Acorga M5640 and Di-(2-ethylhexyl) phosphoric acid (P204), Fe was complexed by the phosphate group of the extractant. The Fe was effectively removed prior to Zn/Cu/Ni to avoid the extractant pollution. The Fe removal efficiency was only 38.34% without sucrose, but it rose to 99.94% with the addition of 0.5 g sucrose. The added sucrose reacted with nitrate to consume H+, which showed a similar rate to the H+ release from Fe hydrolysis. Thereafter, the Fe hydrolysis was continued to remove, the Fe at a high level. The removed Fe was in the form of high-purified hematite nanorod with a diameter and length of 300-600 nm and 0.5-2.5 µm, respectively. After Fe removal, Cu/Zn/Ni was extracted by using Acorga M5640 and P204 to form three halite, including a mixture of copper sulphate hydrate and bonattite (96.8% CuSO4·H2O/CuSO4·3H2O), gunningite (97.5% ZnSO4·H2O) and dwornikite (97.9% NiSO4·H2O). The rest of the solution was neutralised by lime water to remove sulphate as gypsum (95.9% CaSO4) to meet the discharge standard of the electroplating industry. In summary, the recycling efficiency of Fe/Cu/Zn/Ni from the sludge reached 94.4%, 92.6%, 94.7% and 95.3%, which provided an alternative strategy to resource utilise Fe/S-bearing solid waste.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Galvanoplastia , Sulfuros , Zinc , Sacarosa
5.
J Environ Health Sci Eng ; 20(1): 509-519, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35669836

RESUMEN

Cr/Fe-bearing sludge is a hazardous solid waste, produced at mass production in smelting, plating and surface finishing industries. Such waste is commonly treated by chemical detoxification and safety landfill, whereas only a few Cr-rich sludge is recycled as a tanning reagent. In this study, a novel route was developed to recycle Cr/Fe-bearing sludge as erdite-bearing flocculant for wastewater treatment. Results showed that two sludges were irregular aggregates, one of which contained 1.6 wt.% Cr (short for LS) and the other contained 4.2 wt.% Cr (HS). After hydrothermal treatment, stable Cr(III)/S-bearing product was formed from the Cr(VI) reduction in the sludges. Conversely, erdite was generated in nanorod form with diameter and length of 200 nm and 0.5-1 µm from LS, respectively, whereas grew radially to 1.5-2.5 µm for HS. The two erdite-bearing products were spontaneously hydrolysed to Fe/S-bearing flocs and showed similar performance in the treatment of real electroplating effluent with 91.55, 1.94 and 0.25 mg/L of Zn, Ni and Cr, respectively. For instance, by adding 1 g/L product of LS, the release of Cr from the products did not occur, and the residual Zn, Ni and Cr in the effluent was 0.25, 0.65 and 0.17 mg/L, respectively, which met the discharge standard of the electroplating industry. With the two converted products, the residual Zn/Ni/Cr concentrations were apparently lower than those of the raw sludges and other common reagents (e.g. polymeric ferric sulphate, activated carbon and diatomite). Thus, such erdite-bearing products could serve as a flocculant and then be applied in electroplating wastewater treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...