Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Adv Model Earth Syst ; 10(10): 2393-2407, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31007834

RESUMEN

This study aims to understand the nature of the tropical intraseasonal oscillations (ISOs) in an aquaplanet simulation performed using Geophysical Fluid Dynamics Laboratory's AM2.1 with a uniform sea surface temperature within the deep tropics. The simulated ISO resembles the observed Madden-Julian Oscillation in that the spectral peak in precipitation appears at zonal wave number 1 and a period of ~60 days. Vertically integrated moist static energy budget of the simulated ISO shows that enhanced latent heat flux to the east of anomalously active convection causes eastward propagation of the ISO mode, which is weakly opposed by horizontal moisture advection. A series of mechanism denial experiments are conducted either by homogenizing select variables-surface wind stress, longwave radiative heating, and surface evaporation-with their zonal means from the control simulation or by suppressing free-tropospheric moisture variation. Results of the mechanism denial experiments show that the simulated ISO disappears when the interactive surface evaporation is disabled, suggesting that the wind-induced surface heat exchange (WISHE) mechanism is essential to the simulated ISO. Longwave cloud-radiation feedbacks and moisture-convection feedbacks affect horizontal scale and phase speed of the simulated ISO, respectively. Our results strongly suggest that the simulated ISO is the linear WISHE-moisture mode of Fuchs and Raymond under horizontally uniform boundary conditions.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(5 Pt 2): 056302, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15244927

RESUMEN

Employing the formalism introduced by Phys. Rev. Lett. 63, 1962 (1989)], we study the probability density functions (pdf's) of decaying passive scalars in periodic domains under the influence of smooth large scale velocity fields. The particular regime we focus on is one where the normalized scalar pdf's attain a self-similar profile in finite time, i.e., the so-called strange or statistical eigenmode regime. In accordance with the work of Sinai and Yakhot, the central regions of the pdf's are power laws. However, the details of the pdf profiles are dependent on the physical parameters in the problem. Interestingly, for small Peclet numbers the pdf's resemble stretched or pure exponential functions, whereas in the limit of large Peclet numbers, there emerges a universal Gaussian form for the pdf. Numerical simulations are used to verify these predictions.

3.
Chaos ; 12(2): 439-450, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12779574

RESUMEN

We study the statistical and geometrical properties of the potential temperature (PT) field in the surface quasigeostrophic (SQG) system of equations. In addition to extracting information in a global sense via tools such as the power spectrum, the g-beta spectrum, and the structure functions we explore the local nature of the PT field by means of the wavelet transform method. The primary indication is that an initially smooth PT field becomes rough (within specified scales), though in a qualitatively sparse fashion. Similarly, initially one-dimensional iso-PT contours (i.e., PT level sets) are seen to acquire a fractal nature. Moreover, the dimensions of the iso-PT contours satisfy existing analytical bounds. The expectation that the roughness will manifest itself in the singular nature of the gradient fields is confirmed via the multifractal nature of the dissipation field. Following earlier work on the subject, the singular and oscillatory nature of the gradient field is investigated by examining the scaling of a probability measure and a sign singular measure, respectively. A physically motivated derivation of the relations between the variety of scaling exponents is presented, the aim being to bring out some of the underlying assumptions which seem to have gone unnoticed in previous presentations. Apart from concentrating on specific properties of the SQG system, a broader theme of the paper is a comparison of the diagnostic inertial range properties of the SQG system with both the two- and three-dimensional Euler equations. (c) 2002 American Institute of Physics.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(5 Pt 2): 056302, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12513591

RESUMEN

We examine the decay of passive scalars with small, but nonzero, diffusivity in bounded two-dimensional (2D) domains. The velocity fields responsible for advection are smooth (i.e., they have bounded gradients) and of a single large scale. Moreover, the scale of the velocity field is taken to be similar to the size of the entire domain. The importance of the initial scale of variation of the scalar field with respect to that of the velocity field is strongly emphasized. If these scales are comparable and the velocity field is time periodic, we see the formation of a periodic scalar eigenmode. The eigenmode is numerically realized by means of a deterministic 2D map on a lattice. Analytical justification for the eigenmode is available from theorems in the dynamo literature. Weakening the notion of an eigenmode to mean statistical stationarity, we provide numerical evidence that the eigenmode solution also holds for aperiodic flows (represented by random maps). Turning to the evolution of an initially small scale scalar field, we demonstrate the transition from an evolving (i.e., non-self-similar) probability distribution function (pdf) to a stationary (self-similar) pdf as the scale of variation of the scalar field progresses from being small to being comparable to that of the velocity field (and of the domain). Furthermore, the non-self-similar regime itself consists of two stages. Both stages are examined and the coupling between diffusion and the distribution of the finite time Lyapunov exponents is shown to be responsible for the pdf evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA