Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Biomech Model Mechanobiol ; 22(2): 417-432, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36357646

RESUMEN

Erythrocyte ghost formation via hemolysis is a key event in the physiological clearance of senescent red blood cells (RBCs) in the spleen. The turnover rate of millions of RBCs per second necessitates a rapid efflux of hemoglobin (Hb) from RBCs by a not yet identified mechanism. Using high-speed video-microscopy of isolated RBCs, we show that electroporation-induced efflux of cytosolic ATP and other small solutes leads to transient cell shrinkage and echinocytosis, followed by osmotic swelling to the critical hemolytic volume. The onset of hemolysis coincided with a sudden self-propelled cell motion, accompanied by cell contraction and Hb-jet ejection. Our biomechanical model, which relates the Hb-jet-driven cell motion to the cytosolic pressure generation via elastic contraction of the RBC membrane, showed that the contributions of the bilayer and the bilayer-anchored spectrin cytoskeleton to the hemolytic cell motion are negligible. Consistent with the biomechanical analysis, our biochemical experiments, involving extracellular ATP and the myosin inhibitor blebbistatin, identify the low abundant non-muscle myosin 2A (NM2A) as the key contributor to the Hb-jet emission and fast hemolytic cell motion. Thus, our data reveal a rapid myosin-based mechanism of hemolysis, as opposed to a much slower diffusive Hb efflux.


Asunto(s)
Actomiosina , Hemólisis , Humanos , Actomiosina/metabolismo , Hemólisis/fisiología , Eritrocitos/metabolismo , Hemoglobinas/metabolismo , Adenosina Trifosfato/metabolismo
3.
Cancers (Basel) ; 14(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36497276

RESUMEN

(1) Background: The recurrence of glioblastoma multiforme (GBM) is mainly due to invasion of the surrounding brain tissue, where organic solutes, including glucose and inositol, are abundant. Invasive cell migration has been linked to the aberrant expression of transmembrane solute-linked carriers (SLC). Here, we explore the role of glucose (SLC5A1) and inositol transporters (SLC5A3) in GBM cell migration. (2) Methods: Using immunofluorescence microscopy, we visualized the subcellular localization of SLC5A1 and SLC5A3 in two highly motile human GBM cell lines. We also employed wound-healing assays to examine the effect of SLC inhibition on GBM cell migration and examined the chemotactic potential of inositol. (3) Results: While GBM cell migration was significantly increased by extracellular inositol and glucose, it was strongly impaired by SLC transporter inhibition. In the GBM cell monolayers, both SLCs were exclusively detected in the migrating cells at the monolayer edge. In single GBM cells, both transporters were primarily localized at the leading edge of the lamellipodium. Interestingly, in GBM cells migrating via blebbing, SLC5A1 and SLC5A3 were predominantly detected in nascent and mature blebs, respectively. (4) Conclusion: We provide several lines of evidence for the involvement of SLC5A1 and SLC5A3 in GBM cell migration, thereby complementing the migration-associated transportome. Our findings suggest that SLC inhibition is a promising approach to GBM treatment.

4.
BMC Cancer ; 21(1): 1201, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34763650

RESUMEN

BACKGROUND: Radiotherapy is routinely used to combat glioblastoma (GBM). However, the treatment efficacy is often limited by the radioresistance of GBM cells. METHODS: Two GBM lines MO59K and MO59J, differing in intrinsic radiosensitivity and mutational status of DNA-PK and ATM, were analyzed regarding their response to DNA-PK/PI3K/mTOR inhibition by PI-103 in combination with radiation. To this end we assessed colony-forming ability, induction and repair of DNA damage by γH2AX and 53BP1, expression of marker proteins, including those belonging to NHEJ and HR repair pathways, degree of apoptosis, autophagy, and cell cycle alterations. RESULTS: We found that PI-103 radiosensitized MO59K cells but, surprisingly, it induced radiation resistance in MO59J cells. Treatment of MO59K cells with PI-103 lead to protraction of the DNA damage repair as compared to drug-free irradiated cells. In PI-103-treated and irradiated MO59J cells the foci numbers of both proteins was higher than in the drug-free samples, but a large portion of DNA damage was quickly repaired. Another cell line-specific difference includes diminished expression of p53 in MO59J cells, which was further reduced by PI-103. Additionally, PI-103-treated MO59K cells exhibited an increased expression of the apoptosis marker cleaved PARP and increased subG1 fraction. Moreover, irradiation induced a strong G2 arrest in MO59J cells (~ 80% vs. ~ 50% in MO59K), which was, however, partially reduced in the presence of PI-103. In contrast, treatment with PI-103 increased the G2 fraction in irradiated MO59K cells. CONCLUSIONS: The triple-target inhibitor PI-103 exerted radiosensitization on MO59K cells, but, unexpectedly, caused radioresistance in the MO59J line, lacking DNA-PK. The difference is most likely due to low expression of the DNA-PK substrate p53 in MO59J cells, which was further reduced by PI-103. This led to less apoptosis as compared to drug-free MO59J cells and enhanced survival via partially abolished cell-cycle arrest. The findings suggest that the lack of DNA-PK-dependent NHEJ in MO59J line might be compensated by DNA-PK independent DSB repair via a yet unknown mechanism.


Asunto(s)
Neoplasias Encefálicas/terapia , Proteína Quinasa Activada por ADN/deficiencia , Furanos/farmacología , Glioblastoma/terapia , Piridinas/farmacología , Pirimidinas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Quimioradioterapia/métodos , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Furanos/uso terapéutico , Glioblastoma/genética , Glioblastoma/patología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Piridinas/uso terapéutico , Pirimidinas/uso terapéutico , Tolerancia a Radiación/genética , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
5.
Eur J Immunol ; 51(2): 342-353, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33169379

RESUMEN

The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, Kv 1.3 and KCa3.1 channels are recruited to the immunological synapse, increasing the extracellular K+ concentration. These processes are crucial as they initiate gene expression that drives T cell activation and proliferation. The T cell-specific function of the K2P channel family member TASK2 channels and their role in autoimmune processes remains unclear. Using mass spectrometry analysis together with epifluorescence and super-resolution single-molecule localization microscopy, we identified TASK2 channels as novel players recruited to the immunological synapse upon stimulation. TASK2 localizes at the immunological synapse, upon stimulation with CD3 antibodies, likely interacting with these molecules. Our findings suggest that, together with Kv 1.3 and KCa3.1 channels, TASK2 channels contribute to the proper functioning of the immunological synapse, and represent an interesting treatment target for T cell-mediated autoimmune disorders.


Asunto(s)
Sinapsis Inmunológicas/inmunología , Canales de Potasio de Dominio Poro en Tándem/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Complejo CD3/inmunología , Calcio/inmunología , Línea Celular Tumoral , Membrana Celular/inmunología , Células Cultivadas , Femenino , Expresión Génica/inmunología , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/inmunología , Células Jurkat , Canal de Potasio Kv1.3/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T/inmunología
6.
BMC Bioinformatics ; 21(1): 27, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992200

RESUMEN

BACKGROUND: Phosphorylated histone H2AX, also known as γH2AX, forms µm-sized nuclear foci at the sites of DNA double-strand breaks (DSBs) induced by ionizing radiation and other agents. Due to their specificity and sensitivity, γH2AX immunoassays have become the gold standard for studying DSB induction and repair. One of these assays relies on the immunofluorescent staining of γH2AX followed by microscopic imaging and foci counting. During the last years, semi- and fully automated image analysis, capable of fast detection and quantification of γH2AX foci in large datasets of fluorescence images, are gradually replacing the traditional method of manual foci counting. A major drawback of the non-commercial software for foci counting (available so far) is that they are restricted to 2D-image data. In practice, these algorithms are useful for counting the foci located close to the midsection plane of the nucleus, while the out-of-plane foci are neglected. RESULTS: To overcome the limitations of 2D foci counting, we present a freely available ImageJ-based plugin (FocAn) for automated 3D analysis of γH2AX foci in z-image stacks acquired by confocal fluorescence microscopy. The image-stack processing algorithm implemented in FocAn is capable of automatic 3D recognition of individual cell nuclei and γH2AX foci, as well as evaluation of the total foci number per cell nucleus. The FocAn algorithm consists of two parts: nucleus identification and foci detection, each employing specific sequences of auto local thresholding in combination with watershed segmentation techniques. We validated the FocAn algorithm using fluorescence-labeled γH2AX in two glioblastoma cell lines, irradiated with 2 Gy and given up to 24 h post-irradiation for repair. We found that the data obtained with FocAn agreed well with those obtained with an already available software (FoCo) and manual counting. Moreover, FocAn was capable of identifying overlapping foci in 3D space, which ensured accurate foci counting even at high DSB density of up to ~ 200 DSB/nucleus. CONCLUSIONS: FocAn is freely available an open-source 3D foci analyzer. The user-friendly algorithm FocAn requires little supervision and can automatically count the amount of DNA-DSBs, i.e. fluorescence-labeled γH2AX foci, in 3D image stacks acquired by laser-scanning microscopes without additional nuclei staining.


Asunto(s)
Algoritmos , Reparación del ADN , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Línea Celular Tumoral , Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , Histonas/análisis , Histonas/metabolismo , Humanos
7.
BMC Cancer ; 19(1): 299, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30943918

RESUMEN

BACKGROUND: Most tumor cells show aberrantly activated Akt which leads to increased cell survival and resistance to cancer radiotherapy. Therefore, targeting Akt can be a promising strategy for radiosensitization. Here, we explore the impact of the Akt inhibitor MK-2206 alone and in combination with the dual PI3K and mTOR inhibitor PI-103 on the radiation sensitivity of glioblastoma cells. In addition, we examine migration of drug-treated cells. METHODS: Using single-cell tracking and wound healing migration tests, colony-forming assay, Western blotting, flow cytometry and electrorotation we examined the effects of MK-2206 and PI-103 and/or irradiation on the migration, radiation sensitivity, expression of several marker proteins, DNA damage, cell cycle progression and the plasma membrane properties in two glioblastoma (DK-MG and SNB19) cell lines, previously shown to differ markedly in their migratory behavior and response to PI3K/mTOR inhibition. RESULTS: We found that MK-2206 strongly reduces the migration of DK-MG but only moderately reduces the migration of SNB19 cells. Surprisingly, MK-2206 did not cause radiosensitization, but even increased colony-forming ability after irradiation. Moreover, MK-2206 did not enhance the radiosensitizing effect of PI-103. The results appear to contradict the strong depletion of p-Akt in MK-2206-treated cells. Possible reasons for the radioresistance of MK-2206-treated cells could be unaltered or in case of SNB19 cells even increased levels of p-mTOR and p-S6, as compared to the reduced expression of these proteins in PI-103-treated samples. We also found that MK-2206 did not enhance IR-induced DNA damage, neither did it cause cell cycle distortion, nor apoptosis nor excessive autophagy. CONCLUSIONS: Our study provides proof that MK-2206 can effectively inhibit the expression of Akt in two glioblastoma cell lines. However, due to an aberrant activation of mTOR in response to Akt inhibition in PTEN mutated cells, the therapeutic window needs to be carefully defined, or a combination of Akt and mTOR inhibitors should be considered.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Daño del ADN , Furanos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Mutación , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Análisis de la Célula Individual , Serina-Treonina Quinasas TOR/metabolismo
8.
FASEB J ; : fj201701435, 2018 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-29894665

RESUMEN

Induction of DNA double-strand breaks (DSBs) by ionizing radiation leads to formation of micrometer-sized DNA-repair foci, whose organization on the nanometer-scale remains unknown because of the diffraction limit (∼200 nm) of conventional microscopy. Here, we applied diffraction-unlimited, direct stochastic optical-reconstruction microscopy ( dSTORM) with a lateral resolution of ∼20 nm to analyze the focal nanostructure of the DSB marker histone γH2AX and the DNA-repair protein kinase (DNA-PK) in irradiated glioblastoma multiforme cells. Although standard confocal microscopy revealed substantial colocalization of immunostained γH2AX and DNA-PK, in our dSTORM images, the 2 proteins showed very little (if any) colocalization despite their close spatial proximity. We also found that γH2AX foci consisted of distinct circular subunits ("nanofoci") with a diameter of ∼45 nm, whereas DNA-PK displayed a diffuse, intrafocal distribution. We conclude that γH2AX nanofoci represent the elementary, structural units of DSB repair foci, that is, individual γH2AX-containing nucleosomes. dSTORM-based γH2AX nanofoci counting and distance measurements between nanofoci provided quantitative information on the total amount of chromatin involved in DSB repair as well as on the number and longitudinal distribution of γH2AX-containing nucleosomes in a chromatin fiber. We thus estimate that a single focus involves between ∼0.6 and ∼1.1 Mbp of chromatin, depending on radiation treatment. Because of their ability to unravel the nanostructure of DSB-repair foci, dSTORM and related single-molecule localization nanoscopy methods will likely emerge as powerful tools in biology and medicine to elucidate the effects of DNA damaging agents in cells.-Sisario, D., Memmel, S., Doose, S., Neubauer, J., Zimmermann, H., Flentje, M., Djuzenova, C. S., Sauer, M., Sukhorukov, V. L. Nanostructure of DNA repair foci revealed by superresolution microscopy.

9.
Oncotarget ; 9(100): 37379-37392, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30647839

RESUMEN

Targeting MEK protein in cancer cells usually leads to acquired resistance to MEK inhibitors and activation of the prosurvival protein Akt. Since both MEK and Akt are clients of the Hsp90 chaperone system, the present study explores the responses of irradiated lung carcinoma A549 and glioblastoma SNB19 cell lines to combined MEK and Hsp90 inhibition. Unexpectedly, the MEK inhibitor PD184352 administered 24 h prior to irradiation, enhanced cell survival through upregulation of not only MEK and Erk1/2 but also of Akt. In contrast, PD184352 added 1 h before irradiation strongly reduced the expression of Erk and did not upregulate Akt in both cell lines. As a result, the MEK inhibitor increased the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in glioblastoma SNB19 cells. Possible reasons for the enhanced cell killing under this short-term pretreatment schedule may be a down-regulation of Erk during or directly after irradiation, increased DNA damage and/or a strong G2/M arrest 24 h after irradiation. In addition, an 1-h pretreatment with PD184352 and/or NVP-AUY922 under schedule II induced neither G1 arrest nor up-regulation of p-Akt in both cell lines as it did under schedule I. Yet, a long-term treatment with the MEK inhibitor alone caused a strong cytostatical effect. We conclude that the duration of drug pretreatment before irradiation plays a key role in the targeting of MEK in tumor cells. However, due to an aberrant activation of prosurvival proteins, the therapeutic window needs to be carefully defined, or a combination of inhibitors should be considered.

10.
Oncotarget ; 8(28): 45298-45310, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28424411

RESUMEN

High invasiveness and resistance to chemo- and radiotherapy of glioblastoma multiforme (GBM) make it the most lethal brain tumor. Therefore, new treatment strategies for preventing migration and invasion of GBM cells are needed. Using two different migration assays, Western blotting, conventional and super-resolution (dSTORM) fluorescence microscopy we examine the effects of the dual PI3K/mTOR-inhibitor PI-103 alone and in combination with the Hsp90 inhibitor NVP-AUY922 and/or irradiation on the migration, expression of marker proteins, focal adhesions and F-actin cytoskeleton in two GBM cell lines (DK-MG and SNB19) markedly differing in their invasive capacity. Both lines were found to be strikingly different in morphology and migration behavior. The less invasive DK-MG cells maintained a polarized morphology and migrated in a directionally persistent manner, whereas the highly invasive SNB19 cells showed a multipolar morphology and migrated randomly. Interestingly, a single dose of 2 Gy accelerated wound closure in both cell lines without affecting their migration measured by single-cell tracking. PI-103 inhibited migration of DK-MG (p53 wt, PTEN wt) but not of SNB19 (p53 mut, PTEN mut) cells probably due to aberrant reactivation of the PI3K pathway in SNB19 cells treated with PI-103. In contrast, NVP-AUY922 exerted strong anti-migratory effects in both cell lines. Inhibition of cell migration was associated with massive morphological changes and reorganization of the actin cytoskeleton. Our results showed a cell line-specific response to PI3K/mTOR inhibition in terms of GBM cell motility. We conclude that anti-migratory agents warrant further preclinical investigation as potential therapeutics for treatment of GBM.


Asunto(s)
Citoesqueleto/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas HSP90 de Choque Térmico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Citoesqueleto de Actina/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Furanos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Isoxazoles/farmacología , Invasividad Neoplásica , Inhibidores de las Quinasa Fosfoinosítidos-3 , Piridinas/farmacología , Pirimidinas/farmacología , Resorcinoles/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
11.
Oncotarget ; 7(25): 38191-38209, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27224913

RESUMEN

Inhibition of Hsp90 can increase the radiosensitivity of tumor cells. However, inhibition of Hsp90 alone induces the anti-apoptotic Hsp70 and thereby decreases radiosensitivity. Therefore, preventing Hsp70 induction can be a promising strategy for radiosensitization. PI-103, an inhibitor of PI3K and mTOR, has previously been shown to suppress the up-regulation of Hsp70. Here, we explore the impact of combining PI-103 with the Hsp90 inhibitor NVP-AUY922 in irradiated glioblastoma and colon carcinoma cells. We analyzed the cellular response to drug-irradiation treatments by colony-forming assay, expression of several marker proteins, cell cycle progression and induction/repair of DNA damage. Although PI-103, given 24 h prior to irradiation, slightly suppressed the NVP-AUY922-mediated up-regulation of Hsp70, it did not cause radiosensitization and even diminished the radiosensitizing effect of NVP-AUY922. This result can be explained by the activation of PI3K and ERK pathways along with G1-arrest at the time of irradiation. In sharp contrast, PI-103 not only exerted a radiosensitizing effect but also strongly enhanced the radiosensitization by NVP-AUY922 when both inhibitors were added 3 h before irradiation and kept in culture for 24 h. Possible reasons for the observed radiosensitization under this drug-irradiation schedule may be a down-regulation of PI3K and ERK pathways during or directly after irradiation, increased residual DNA damage and strong G2/M arrest 24 h thereafter. We conclude that duration of drug treatment before irradiation plays a key role in the concomitant targeting of PI3K/mTOR and Hsp90 in tumor cells.


Asunto(s)
Furanos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Isoxazoles/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Piridinas/farmacología , Pirimidinas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Resorcinoles/farmacología , Serina-Treonina Quinasas TOR/análisis , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/radioterapia , Daño del ADN , Esquema de Medicación , Sinergismo Farmacológico , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Humanos , Tolerancia a Radiación/efectos de los fármacos , Regulación hacia Arriba
12.
Biomicrofluidics ; 9(6): 064109, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26649129

RESUMEN

Microinjection with ultra-fine glass capillaries is widely used to introduce cryoprotective agents and other foreign molecules into animal cells, oocytes, and embryos. The fragility of glass capillaries makes difficult the microinjection of fish eggs and embryos, which are usually protected by a hard outer shell, called the chorion. In this study, we introduce a new electromechanical approach, based on the electropiercing of fish eggs with a stationary needle electrode. The electropiercing setup consists of two asymmetric electrodes, including a µm-scaled nickel needle placed opposite to a mm-scaled planar counter-electrode. A fish egg is immersed in low-conductivity solution and positioned between the electrodes. Upon application of a short electric pulse of sufficient field strength, the chorion is electroporated and the egg is attracted to the needle electrode by positive dielectrophoresis. As a result, the hard chorion and the subjacent yolk membrane are impaled by the sharp electrode tip, thus providing direct access to the egg yolk plasma. Our experiments on early-stage medaka fish embryos showed the applicability of electro-microinjection to fish eggs measuring about 1 mm in diameter. We optimized the electropiercing of medaka eggs with respect to the field strength, pulse duration, and conductivity of bathing medium. We microscopically examined the injection of dye solution into egg yolk and the impact of electropiercing on embryos' viability and development. We also analyzed the mechanisms of electropiercing in comparison with the conventional mechanical microinjection. The new electropiercing method has a high potential for automation, e.g., via integration into microfluidic devices, which would allow a large-scale microinjection of fish eggs for a variety of applications in basic research and aquaculture.

13.
PLoS One ; 10(3): e0119990, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25756525

RESUMEN

Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol P ino [m/s] and expression/localization of SLC5A3. P ino values were determined by cell volumetry over a wide tonicity range (100-275 mOsm) in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200-275 mOsm), P ino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼ 3 nm/s at 100-125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in P ino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM). dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200-2000 localizations/µm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80-800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells.


Asunto(s)
Expresión Génica , Proteínas de Choque Térmico/metabolismo , Simportadores/metabolismo , Transporte Biológico , Tamaño de la Célula , Células HEK293 , Proteínas de Choque Térmico/genética , Humanos , Inositol/metabolismo , Microscopía Confocal , Presión Osmótica , Transporte de Proteínas , Simportadores/genética , Activación Transcripcional , Regulación hacia Arriba
14.
Exp Cell Res ; 330(2): 346-357, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25149900

RESUMEN

Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Fosfohidrolasa PTEN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Citoesqueleto de Actina , Actinas/biosíntesis , Benzotiazoles/farmacología , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Humanos , Sistema de Señalización de MAP Quinasas/genética , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/biosíntesis , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Interferencia de ARN , ARN Interferente Pequeño , Serina-Treonina Quinasas TOR/biosíntesis , Tolueno/análogos & derivados , Tolueno/farmacología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética
15.
PLoS One ; 9(1): e87052, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498019

RESUMEN

Glioblastoma multiforme (GBM) is characterized by rapid growth, invasion and resistance to chemo-/radiotherapy. The complex cell surface morphology with abundant membrane folds, microvilli, filopodia and other membrane extensions is believed to contribute to the highly invasive behavior and therapy resistance of GBM cells. The present study addresses the mechanisms leading to the excessive cell membrane area in five GBM lines differing in mutational status for PTEN and p53. In addition to scanning electron microscopy (SEM), the membrane area and folding were quantified by dielectric measurements of membrane capacitance using the single-cell electrorotation (ROT) technique. The osmotic stability and volume regulation of GBM cells were analyzed by video microscopy. The expression of PTEN, p53, mTOR and several other marker proteins involved in cell growth and membrane synthesis were examined by Western blotting. The combined SEM, ROT and osmotic data provided independent lines of evidence for a large variability in membrane area and folding among tested GBM lines. Thus, DK-MG cells (wild type p53 and wild type PTEN) exhibited the lowest degree of membrane folding, probed by the area-specific capacitance C m = 1.9 µF/cm(2). In contrast, cell lines carrying mutations in both p53 and PTEN (U373-MG and SNB19) showed the highest C m values of 3.7-4.0 µF/cm(2), which corroborate well with their heavily villated cell surface revealed by SEM. Since PTEN and p53 are well-known inhibitors of mTOR, the increased membrane area/folding in mutant GBM lines may be related to the enhanced protein and lipid synthesis due to a deregulation of the mTOR-dependent downstream signaling pathway. Given that membrane folds and extensions are implicated in tumor cell motility and metastasis, the dielectric approach presented here provides a rapid and simple tool for screening the biophysical cell properties in studies on targeting chemo- or radiotherapeutically the migration and invasion of GBM and other tumor types.


Asunto(s)
Membrana Celular/metabolismo , Mutación , Fosfohidrolasa PTEN/genética , Proteína p53 Supresora de Tumor/genética , Western Blotting , Línea Celular , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/ultraestructura , Tamaño de la Célula/efectos de los fármacos , Capacidad Eléctrica , Ácido Graso Sintasas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Células HEK293 , Humanos , Soluciones Hipotónicas/farmacología , Soluciones Isotónicas/farmacología , Microscopía Electrónica de Rastreo , Concentración Osmolar , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
16.
Transl Oncol ; 6(2): 169-79, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23544169

RESUMEN

Previous studies have shown that the dual phosphatidylinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) inhibitor NVP-BEZ235 radiosensitizes tumor cells if added shortly before ionizing radiation (IR) and kept in culture medium thereafter. The present study explores the impact of inhibitor and IR schedule on the radiosensitizing ability of NVP-BEZ235 in four human glioblastoma cell lines. Two different drug-IR treatment schedules were compared. In schedule I, cells were treated with NVP-BEZ235 for 24 hours before IR and the drug was removed before IR. In schedule II, the cells were exposed to NVP-BEZ235 1 hour before, during, and up to 48 hours after IR. The cellular response was analyzed by colony counts, expression of marker proteins of the PI3K/AKT/mTOR pathway, cell cycle, and DNA damage. We found that under schedule I, NVP-BEZ235 did not radiosensitize cells, which were mostly arrested in G1 phase during IR exposure. In addition, the drug-pretreated and irradiated cells exhibited less DNA damage but increased expressions of phospho-AKT and phospho-mTOR, compared to controls. In contrast, NVP-BEZ235 strongly enhanced the radiosensitivity of cells treated according to schedule II. Possible reasons of radiosensitization by NVP-BEZ235 under schedule II might be the protracted DNA repair, prolonged G2/M arrest, and, to some extent, apoptosis. In addition, the PI3K pathway was downregulated by the NVP-BEZ235 at the time of irradiation under schedule II, as contrasted with its activation in schedule I. We found that, depending on the drug-IR schedule, the NVP-BEZ235 can act either as a strong radiosensitizer or as a cytostatic agent in glioblastoma cells.

17.
Cancer Lett ; 331(2): 200-10, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23340178

RESUMEN

This study explores the impact of Hsp90 inhibitors NVP-AUY922 and NVP-BEP800 in combination with ionizing radiation (IR) on the migration and invasion of lung carcinoma A549 and glioblastoma SNB19 cells, under normoxia or hypoxia. Independent of oxygen concentration, both drugs decreased the migration and invasion rates of non-irradiated tumor cells. Combined drug-IR treatment under hypoxia inhibited cell invasion to a greater extent than did each treatment alone. Decreased migration of cells correlated with altered expression of several matrix-associated proteins (FAK/p-FAK, Erk2, RhoA) and impaired F-actin modulation. The anti-metastatic efficacy of the Hsp90 inhibitors could be useful in combinational therapies of cancer.


Asunto(s)
Hipoxia de la Célula , Movimiento Celular/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Isoxazoles/farmacología , Invasividad Neoplásica/prevención & control , Pirimidinas/farmacología , Resorcinoles/farmacología , Western Blotting , Neoplasias Encefálicas/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Citometría de Flujo , Glioblastoma/patología , Humanos , Neoplasias Pulmonares/patología , Microscopía Electrónica de Rastreo , Cicatrización de Heridas/efectos de los fármacos
18.
Assay Drug Dev Technol ; 11(1): 9-16, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22994967

RESUMEN

Functional access to membrane proteins, for example, ion channels, of individual cells is an important prerequisite in drug discovery studies. The highly sophisticated patch-clamp method is widely used for electrogenic membrane proteins, but is demanding for the operator, and its automation remains challenging. The dielectrophoretically-accessed, intracellular membrane-potential measurement (DAIMM) method is a new technique showing high potential for automation of electrophysiological data recording in the whole-cell configuration. A cell suspension is brought between a mm-scaled planar electrode and a µm-scaled tip electrode, placed opposite to each other. Due to the asymmetric electrode configuration, the application of alternating electric fields (1-5 MHz) provokes a dielectrophoretic force acting on the target cell. As a consequence, the cell is accelerated and pierced by the tip electrode, hence functioning as the internal (working) electrode. We used the light-gated cation channel Channelrhodopsin-2 as a reporter protein expressed in HEK293 cells to characterize the DAIMM method in comparison with the patch-clamp technique.


Asunto(s)
Electrodos , Electroforesis/métodos , Membranas Intracelulares/fisiología , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Metales , Automatización de Laboratorios/instrumentación , Automatización de Laboratorios/métodos , Channelrhodopsins , Electroforesis/instrumentación , Células HEK293 , Humanos , Técnicas de Placa-Clamp
19.
Biochim Biophys Acta ; 1828(2): 699-707, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23041580

RESUMEN

Many functions of T lymphocytes are closely related to cell volume homeostasis and regulation, which utilize a complex network of membrane channels for anions and cations. Among the various potassium channels, the voltage-gated K(V)1.3 is well known to contribute greatly to the osmoregulation and particularly to the potassium release during the regulatory volume decrease (RVD) of T cells faced with hypotonic environment. Here we address a putative role of the newly identified two-pore domain (K(2P)) channels in the RVD of human CD4(+) T lymphocytes, using a series of potent well known channel blockers. In the present study, the pharmacological profiles of RVD inhibition revealed K(2P)5.1 and K(2P)18.1 as the most important K(2P) channels involved in the RVD of both naïve and stimulated T cells. The impact of chemical inhibition of K(2P)5.1 and K(2P)18.1 on the RVD was comparable to that of K(V)1.3. K(2P)9.1 also notably contributed to the RVD of T cells but the extent of this contribution and its dependence on the activation status could not be unambiguously resolved. In summary, our data provide first evidence that the RVD-related potassium efflux from human T lymphocytes relies on K(2P) channels.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem/química , Linfocitos T/metabolismo , Biofisica/métodos , Linfocitos T CD4-Positivos/citología , Electrofisiología/métodos , Homeostasis , Humanos , Inflamación , Iones , Microscopía por Video/métodos , Ósmosis , Estructura Terciaria de Proteína , Receptores de Antígenos de Linfocitos T/metabolismo , Factores de Tiempo
20.
Biochem Biophys Res Commun ; 428(1): 127-31, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23063978

RESUMEN

The Japanese medaka fish, Oryzias latipes, has become a powerful vertebrate model organism in developmental biology and genetics. The present study explores the dielectric properties of medaka embryos during pre-hatching development by means of the electrorotation (ROT) technique. Due to their layered structure, medaka eggs exhibited up to three ROT peaks in the kHz-MHz frequency range. During development from blastula to early somite stage, ROT spectra varied only slightly. But as the embryo progressed to the late-somite stage, the ROT peaks underwent significant changes in frequency and amplitude. Using morphological data obtained by light and electron microscopy, we analyzed the ROT spectra with a three-shell dielectric model that accounted for the major embryonic compartments. The analysis yielded a very high value for the ionic conductivity of the egg shell (chorion), which was confirmed by independent osmotic experiments. A relatively low capacitance of the yolk envelope was consistent with its double-membrane structure revealed by transmission electron microscopy. Yolk-free dead eggs exhibited only one co-field ROT peak, shifted markedly to lower frequencies with respect to the corresponding peak of live embryos. The dielectric data may be useful for monitoring the development and changes in fish embryos' viability/conditions in basic research and industrial aquaculture.


Asunto(s)
Conductividad Eléctrica , Embrión no Mamífero/fisiología , Oryzias/embriología , Animales , Corion/fisiología , Yema de Huevo/fisiología , Oryzias/fisiología , Rotación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA